Оценить:
 Рейтинг: 0

Генетика на пальцах

Год написания книги
2022
Теги
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
РНК служат не только матрицами. Они входят в состав ряда ферментов и сами по себе тоже способны проявлять ферментативную активность, которая выражается в способности «разрывать» другие молекулы РНК или, напротив, «склеивать» их фрагменты. РНК, выступающие в роли самостоятельных ферментов, называются рибозимами.

Существует также транспортная РНК, которая переносит аминокислоты к месту синтеза белков. А малютка РНК-праймер, состоящая всего из десятка нуклеотидов, выполняет очень важную функцию – запускает процесс репликации ДНК.

Кстати говоря, вид одной длинной спирали имеют молекулы РНК, служащие матрицей для синтеза белков. Все прочие, «нематричные» разновидности РНК состоят из «клубков», образованных множеством коротких спиралей.

У многих вирусов РНК играет роль ДНК, то есть является хранителем наследственной информации. А знаете ли вы, что представляют собой вирусы? Молекулу нуклеиновой кислоты (ДНК или РНК), заключенную в защитную белковую оболочку, называемую капсидом. Капсид выполняет не только защитную функцию. Он также обеспечивает прикрепление вируса к поверхности клеточных мембран благодаря наличию рецепторов, способных связываться с мембранными рецепторами клеток-мишеней. Капсид остается за пределами клетки, а нуклеиновая кислота вируса проникает внутрь и «переключает» клетку на производство вирусов. Паразитируя в клетках, вирусы нарушают их нормальную жизнедеятельность, вызывая болезни. Только в клетке вирус живет «полноценной», активной жизнью. Вне клетки он находится в неактивном состоянии. Вирусы поражают все живое: животных, растения, микроорганизмы.

Размеры вирусов очень малы, поэтому их величину измеряют не в микронах (миллионных долях метра), а в нанометрах (миллиардных долях метра). «Мелкий» вирус полиомиелита имеет размер около 20 нм, а «гигантский» вирус желтухи свеклы – 1500 нм. Одну клетку могут заселять одновременно несколько десятков вирусов.

Одни ученые считают вирусы особой, неклеточной формой жизни, а другие – всего лишь «неживыми» комплексами органических молекул, которые способны взаимодействовать с живыми организмами.

С одной стороны, вирусы могут реализовывать свою наследственную информацию, то есть воспроизводиться, только после внедрения в клетки за счет использования клеточных ресурсов. Своего обмена веществ у вирусов нет, за пределами клетки они неактивны.

С другой стороны, вирусы имеют собственный наследственный материал, они способны к размножению (пусть и внутри клетки-хозяина) и эволюционируют путем естественного отбора, что позволяет отнести их к живым организмам.

Хорошо подходит к вирусам поэтичное определение «организмы на краю жизни». В шутку биологи говорят о вирусах так: «Они живые, но не совсем».

Схематическое изображение различных вирусов

Вирусы служат одним из инструментов генной инженерии, о которой мы поговорим после того, как ознакомимся с основами генетики.

ОТВЕТ НА ВОПРОС. Для выживания биологического вида[8 - Биологический вид – это совокупность особей, сходных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство.] имеет значение не только скорость размножения, но и качество потомства. Грубо говоря, выгоднее иметь одного полноценного, здорового потомка, чем десять «дефективных». «Упаковку» молекул ДНК в ядро можно сравнить с убиранием вещей в шкаф, где они будут защищены от разных случайных повреждений. Нахождение в ядре способствует лучшему сохранению бесценной наследственной информации. И вообще в отношении потомства работает принцип «лучше меньше, да лучше».

Глава 2

Гены и их свойства

Ген представляет собой участок молекулы ДНК, в котором закодирована последовательность синтеза одного конкретного белка или же одной конкретной РНК. Молекулы ДНК условно можно сравнить с книгами, а гены – с абзацами.

Один ген отвечает за синтез одного химического вещества, и потому он считается структурной и функциональной единицей наследственности – структурной как часть молекулы ДНК и функциональной, поскольку выполняет одну конкретную функцию. Впрочем, классическая концепция генетики («один ген – один белок – один признак») довольно условна и далеко не всегда верна, но об этом мы поговорим немного позже.

Примечательно, что термин «ген» появился в 1909 году, задолго до того, как ученые узнали о свойствах и структуре ДНК. Изначально ген был условным понятием, обозначающим нечто, определяющее один конкретный признак организма. Ученым был нужен термин, определяющий единицу наследственности. Без этого термина невозможно было выстраивать гипотезы и вести научный поиск.

Кстати говоря, с атомами произошла такая же история. Понятие об атоме как о наименьшей неделимой частице материи впервые было сформулировано еще древнегреческими и древнеиндийскими философами. Научные же определения понятий молекулы и атома были приняты только в 1860 году. А приемлемая с научной точки зрения модель атома появилась лишь в 1913 году. Таким образом, атом не имел четкого научного объяснения более двух тысяч лет, что не мешало оперировать этим понятием!

Логическим путем ученые пытались установить количество генов человека. Данные «широко плавали» – от ста тысяч до миллиона, но все сходились на том, что генов очень и очень много, а оттолкнувшись от этого, приходили к выводу, что носителями наследственной информации должны быть белки, а не ДНК.

Молекулы многих белков по своим размерам могут сравниться с молекулами ДНК, но при этом они состоят из двадцати разных аминокислот[9 - Аминокислотами называются химические соединения, в молекуле которых одновременно содержатся карбоксильные группы и аминогруппы.], а молекулы ДНК образованы четырьмя нуклеотидами (выделять составные части гигантских молекул ученые научились гораздо раньше, чем изучили их структуры). «Двадцать аминокислот дают несравнимо большее количество комбинаций, чем четыре нуклеотида, следовательно, носителями наследственной информации являются белки», – говорили сторонники белковой природы гена, и это утверждение трудно было оспорить. В то время (первая половина ХХ века) никто и помыслить не мог о том, что счет нуклеотидам в молекуле ДНК может идти даже не на миллионы, а на сотни миллионов! Да, наследственная информация записана всего четырьмя буквами, но в очень и очень толстых книгах.

Так сколько же у нас генов? В наше время принято считать, что у человека их около двадцати тысяч. Всего-навсего…

Знакомо ли вам выражение «и на старуху бывает проруха»? Такая вот «проруха» произошла с создателем эволюционной теории Чарльзом Дарвином, который первым попытался всерьез разобраться в принципах наследственности и объяснить, как именно происходит наследование признаков от родителей.

Предупреждение: дальше читайте не просто внимательно, а очень внимательно, потому что за описанием гипотезы Дарвина последует вопрос.

Для объяснения механизма наследственности Дарвин придумал геммулы, некие гипотетические частицы, обеспечивающие наследование признаков. Эти самые геммулы, по мнению ученого, образовывались во всех клетках организма, а затем поступали в кровь и с током крови доставлялись в половые железы. Каждая «новорожденная» половая клетка получала полный набор геммул от всех клеток организма, иначе говоря – получала всю наследственную информацию, которая затем передавалась потомству.

Предположение Дарвина выглядело весьма логично. К тому же оно объясняло наследование приобретенных признаков. Изменившиеся клетки (суть нового признака заключается в изменении клеток) вырабатывают новые геммулы, отличающиеся от тех, которые они вырабатывали прежде.

По неизвестным нам причинам Дарвин не удосужился получить практическое подтверждение своей гипотезы. То ли другие дела помешали, то ли гипотеза казалась ему настолько крепкой, что проверять ее на практике не было необходимости.

А теперь вопрос: как бы вы проверили дарвиновскую гипотезу?

Примечание. Вы ученый-биолог. У вас есть лаборатория со всем необходимым, а также есть возможность использовать подопытных животных, ваши возможности практически неограниченны. Cтарайтесь, чтобы ваш эксперимент был как можно проще. Незачем усложнять, если можно обойтись без этого.

Идем дальше. Пора нам познакомиться с геном поближе, узнать о его свойствах.

Главным свойством гена является его дискретность. Это слово можно перевести как «обособленность». Каждый ген существует сам по себе. Гены не могут соединяться друг с другом и в результате образовывать новый ген. Одни гены могут подавлять другие, не давая им возможности выполнять свою функцию, но не могут с ними соединяться. Ген един и неделим! Именно дискретность делает ген структурной и функциональной ЕДИНИЦЕЙ наследственности.

Из дискретности логически вытекает другое свойство генов – их стабильность. Гены способны функционировать, не изменяя собственной структуры. Каким ген был, таким он и остается после считывания с него наследственной информации.

Однако в то же время стабильность генов сочетается с их лабильностью – способностью изменяться.

Напрашивается вопрос: «Как ген может одновременно быть и стабильным, и лабильным?! Это же взаимоисключающие понятия!».

Да, взаимоисключающие. Но, тем не менее, гену присущи оба этих свойства.

Давайте разбираться. Сам по себе, как структурная единица, как фрагмент молекулы ДНК, ген стабилен. В процессе выполнения своих функций ген никак не изменяется.

Изменяется ген при копировании молекулы ДНК или же при ее повреждении. Мы еще будем говорить об этом, а пока что важно усвоить следующее – гены способны изменяться в результате каких-то «глобальных» процессов, происходящих со всей молекулой ДНК. Но сам по себе ген стабилен. Во время работы, то есть во время считывания информации, с ним ничего не происходит.

Одни и те же гены, то есть гены, отвечающие за развитие одного признака, могут существовать в различных формах, которые называются аллелями (не путайте аллели с аллеями!). Обычно аллельных генов два, один получен от матери, а другой – от отца. По каждому кодируемому признаку мы имеем парный набор генов.

Аллельные гены могут подавлять друг друга, то есть блокировать считывание информации с парного гена. Так, например, ген карих глаз подавляет ген голубых глаз. Если у отца глаза карие, а у матери и ее родителей – голубые, то у ребенка будут карие глаза. В свое время мы рассмотрим принципы наследования признаков более подробно. Пока что надо запомнить, что одни и те же гены могут существовать в различных формах (аллелях) и что аллельные гены могут друг друга подавлять. Кто кого подавляет, предопределено изначально, а не определяется конкретной ситуацией. Иначе говоря, ген карих глаз будет подавлять ген голубых глаз у всех людей.

Конкуренция в рамках пары генов приводит к тому, что одни признаки наследуются от отца, а другие от матери. Но при этом никогда в наследовании не будет половинчатости! Невозможно унаследовать один признак наполовину от матери и наполовину от отца, потому что гены не смешиваются друг с другом даже в парах, отвечающих за один и тот же признак. Гены никогда не смешиваются! Образно говоря, у ребенка голубоглазой матери и кареглазого отца будут голубые (в отдельных случаях такое возможно, и мы это в свое время обсудим) или карие глаза, но не темно-голубые или светло-карие.

«Сила» гена, его способность подавлять парный ген, называется экспрессивностью. Экспрессивность определяет степень выраженности гена в кодируемом им признаке. Чем ген экспрессивнее, тем сильнее он подавляет своего аллельного собрата.

Гены специфичны, каждый ген кодирует синтез одного конкретного белка, то есть отвечает за один определенный признак. Один ген – один белок – один признак… Однако настало время внести уточнение в это утверждение.

Предупреждение: читаем вдумчиво и ничему не удивляемся! Не бойтесь, что поначалу в голове образуется какая-то «каша», к концу этой главы вся «каша» разложится по тарелочкам!

Некоторые гены обладают множественным действием, то есть способностью влиять на несколько признаков. Такая «многогранность» называется плейотропией.

Плейотропия может быть первичной или вторичной.

При первичной плейотропии один ген на самом деле влияет на несколько признаков. Например, у человека ген, определяющий рыжую окраску волос, одновременно обуславливает более светлую окраску кожи и наличие на ней веснушек.

При вторичной плейотропии ген, по сути дела, влияет на один признак, от которого напрямую зависит несколько других признаков. Классическим примером вторичной плейотропии является нарушение синтеза белка крови гемоглобина, приводящее к развитию заболевания, называемого серповидноклеточной анемией. «Дефективный», то есть измененный ген, вызывает нарушение синтеза гемоглобина и на этом «умывает руки». Дальше действует «дефективный» гемоглобин, который приводит к таким вторичным проявлениям, как невосприимчивость к малярии, анемия,[10 - Анемиями называются заболевания крови, сопровождаемые уменьшением содержания гемоглобина и эритроцитов.] увеличение печени и селезенки, поражение сердца и головного мозга.

Важно понимать, что правилу «один ген – один белок – один признак» плейотропия совершенно не противоречит. Белок-то в результате считывания информации с гена вырабатывается один, просто он может принимать участие в нескольких процессах, происходящих в организме. Давайте скажем так: «один ген – один белок (или одна РНК)», и эта концепция будет верной для любого, без исключения. Вы с этим согласны? Наверное, согласны, ведь с помощью одной матрицы два разных вещества не наштампуешь…

А знаете ли вы, сколько разновидностей белков синтезируется в организме человека? Более ста тысяч! А генов у нас, как вы уже знаете, примерно впятеро меньше. Получается, что в среднем один ген должен обеспечивать синтез пяти белков. Но матрица-то одна! Код один!

Да, матрица одна, честное слово, одна. А «продуктов», тем не менее, она дает несколько.

Как понимать такой «парадокс»?

<< 1 2 3 >>
На страницу:
2 из 3