Оценить:
 Рейтинг: 3.6

Компьютерная графика в дизайне

Год написания книги
2008
<< 1 ... 9 10 11 12 13 14 15 16 17 ... 21 >>
На страницу:
13 из 21
Настройки чтения
Размер шрифта
Высота строк
Поля

1. Так же, как и треугольник цветности модели RGB, она включает в себя по одному оттенку всех цветов, визуально воспринимаемых стандартным наблюдателем. Таким образом, диаграмма представляет собой графическое отображение цветового охвата человеческого глаза – локус.

2. Чистые спектральные цвета, соответствующие излучению только одной из частот видимой части спектра, расположены в ней на криволинейной части границы – линии спектральной цветности. Цвета, отсутствующие в спектре, но синтезируемые в виде оттенков монохромной шкалы с базовыми красным и фиолетовым цветами, расположены на прямолинейном участке границы – линии пурпурной цветности.

3. В середине хроматической области цветовой диаграммы расположена ахроматическая точка, цветность которой не определена. Эта точка называется также точкой опорного белого цвета. При смещении из этой точки по прямой линии, соединяющей ее с любой точкой границы цветовой диаграммы, определяется насыщенность цвета, т. е. цвет становится ближе к чистому спектральному и менее бледным.

Примечание

Более подробно понятие насыщенности цвета рассмотрено в разд. 1.3.7.

Цветовая диаграмма не может содержать в себе всех цветов из цветового пространства CIE xyY, поскольку при ее построении использованы только две цветовые координаты. Значения координат х и у определяют цветность и насыщенность цвета, но не его светлоту.

Ахроматическая точка на диаграмме может считаться белой только условно. Ее фактический оттенок и местоположение зависит от источника света, выбранного для синтеза цвета, или от источника освещения. Координаты этой точки однозначно определяются цветовой температурой источника. Цветовая температура – это характеристика интенсивности излучения источника света (табл. 1.3.1). Ее значение равняется температуре нагрева абсолютно черного тела, при которой последнее испускает излучение с той же цветностью, что и измеряемый источник.

Таблица 1.3.1.Некоторые источники света и их цветовые температуры

В практических целях цветовая диаграмма xyY применяется для сравнения цветовых охватов устройств ввода и вывода с локусом и между собой. Для этого внутри локуса выбираются точки, соответствующие выбранным для аддитивного синтеза цвета базовым цветам. После соединения их отрезками прямых получается геометрическая фигура, представляющая цветовой охват устройства. На рис. 1.3.14 изображены цветовые охваты стандартных цветовых пространств RGB и полиграфического процесса цветной офсетной печати.

Рис. 1.3.14. Сопоставление цветовых охватов устройств вывода на цветовой диаграмме xyY

Примечание

Цветовой охват модели CMYK, использующейся при цветной офсетной печати, имеет форму шестиугольника, а не треугольника, поскольку приходится учитывать в качестве базовых цветов результаты равномерного попарного смешивания всех трех хроматических базовых цветов этой модели (см. разд. 1.3.6).

Отметим, что для получения адекватных результатов сравнения цветовых охватов различных устройств следует применять стандартные источники освещения (как правило, D50).

Кроме сравнения цветовых охватов, цветовая модель XYZ и производная от нее модель xyY применяются для взаимного преобразования цветов из цветового пространства одной модели в цветовое пространство другой.

К недостаткам цветовых моделей XYZ и xyY следует отнести сложность учета светлоты цвета и отсутствие равноконтрастности. Последнее проявляется в том, что одинаковые расстояния в цветовом пространстве CIE XYZ и на цветовой диаграмме xyY в различных их частях не соответствуют одинаковому зрительному различию между выбранными цветами при одинаковой светлоте. Иными словами, системы цветовых координат получаются нелинейными. Цветоразличительные свойства зрения минимальны на границе локуса (в зоне спектральных цветов) и максимальны в области нулевых цветностей (для ахроматической шкалы).

Эти недостатки были успешно преодолены в равноконтрастных цветовых моделях, одна из которых (CIE Lab) рассмотрена в разд. 1.3.8.

1.3.6. Субтрактивная модель

Субтрактивными моделями цвета (от англ. subtract – вычитать) называются цветовые модели, в которых световой поток со спектральным распределением, визуально воспринимающимся как нужный цвет, создается за счет пропорционального вычитания из исходного белого светового потока его отдельных спектральных диапазонов. Этот механизм был рассмотрен в разд. 1.3.1.

Так же, как при построении цветового пространства аддитивной модели цвета, базовые цвета субтрактивной модели можно выбрать множеством способов. Однако на практике пользуются почти исключительно триадными цветами: бирюзовым, пурпурным и желтым. В компьютерной графике и полиграфии принято обозначать эти цвета по первым буквам их английских названий: Cyan, Magenta, Yellow.

Примечание

Несмотря на то, что в субтрактивной модели базовые цвета можно выбирать произвольно, выбор красного, зеленого и синего (RGB) в данном случае был бы крайне неудачным. Рассчитывать количества таких красок для получения нужного цвета отраженного светового потока очень сложно из-за того, что каждая из них поглощает волны не одного, а сразу двух из основных поддиапазонов видимого спектра. Красная краска поглощает волны синего и зеленого поддиапазонов, зеленая – красного и синего и синяя – желтого и зеленого. Следовательно, при одновременном нанесении любой пары таких красок будет получаться черный цвет.

Выбор именно этих цветов в качестве базовых обусловлен природой образования цвета отраженным светом. При отражении светового потока от окрашенного листа бумаги (см. рис. 1.3.3) бирюзовая краска избирательно поглощает волны, относящиеся к красному цвету, и отражает все остальные. Чем больше этой краски нанесено на лист, тем сильнее поглощается красный спектральный компонент светового потока. Таким образом, с помощью бирюзовой краски можно управлять красным спектральным компонентом отраженного потока света.

Пурпурная краска поглощает зеленый спектральный компонент светового потока, отражая все остальные световые волны. Желтая краска поглощает синий спектральный компонент, отражая все остальное. Отметим, что в цветовом круге (см. рис. 1.3.10) бирюзовый и красный, пурпурный и зеленый, желтый и синий расположены на концах соединяющих их диаметров. В теории цвета такие пары цветов называются дополнительными или комплементарными. Основное свойство дополнительных цветов равной насыщенности и светлоты – при смешивании в равной пропорции они дают ахроматический цвет.

На любой участок поверхности бумаги можно нанести от 0 до 100 % краски, поэтому цветовые координаты субтрактивной модели принято разделять на 100 интервалов. Поэтому формула цвета для такой модели выглядит следующим образом: Ca%Mb%Yc%. Например, C50%M100%Y100% – формула, соответствующая 50 %-му оттенку красного цвета.

При увеличении количества нанесенной на бумагу краски отраженный световой поток становится все слабее. Поэтому в теории при смешивании максимально допустимых цветовой моделью количеств трех базовых красок должен получаться черный цвет, а при их полном отсутствии – белый. Смешивание базовых красок в равных пропорциях соответствует оттенкам ахроматической шкалы (монохромной шкалы с базовыми черным и белым цветами).

При выборе в качестве цветовых декартовых координат в трехмерном пространстве получается цветовое пространство, очень похожее на пространство модели RGB – изменена только система координат, что приводит лишь к развороту цветового куба.

К сожалению, на практике даже удовлетворительное воспроизведение черного с помощью красок хроматических базовых цветов невозможно. В красках имеются примеси, степень размола пигмента в них может меняться, и в результате при нанесении на бумагу трех базовых красок по 100 % получается не сочный черный цвет, а темный оттенок коричневого. Кроме того, оттенки черного, полученные применением равных количеств красок базовых цветов, оказываются засоренными посторонним цветом на всем протяжении ахроматической шкалы.

Примечание

Из-за этого дешевые струйные принтеры, работавшие с тремя цветными чернильницами CMY, больше не выпускают.

Для компенсации описанного недостатка субтрактивной цветовой модели в ее состав ввели дополнительный базовый цвет – черный. Черная краска применяется в цветной офсетной печати для улучшения качества теней, оттенков черного и воспроизведения ахроматических фрагментов изображения. Таким образом, в модифицированной версии субтрактивной цветовой модели (CMYK) имеется четыре базовых цвета – буквой "K" обозначается черный.

Примечание

В отдельных случаях в цветном отпечатке черный цвет синтезируется за счет смешивания черной и хроматических красок. Такой черный цвет с хроматической добавкой называется обогащенным черным. Он воспринимается визуально как черный, но более насыщенный, чем С0%M0%Y0%K100 %. Обогащенный черный улучшает внешний вид градиентных заливок (см. разд. 2.4.2).

Каждый из четырех параметров модели CMYK представляет собой целое число, которое может изменяться в пределах от 0 до 100. Для хранения четырех таких чисел в двоичной форме достаточно 4 х 7 = 28 битов, но в большинстве реализаций под каждое число в дескрипторе информационной модели цвета отводят не 7, а 8 битов, поэтому считается, что глубина цвета в модели CMYK равна 32 битам на элемент изображения.

Недостатки субтрактивной модели такие же, как у модели RGB: аппаратная зависимость, причем в большей степени, чем у аддитивной модели, и ограниченный цветовой охват. Для борьбы с этими недостатками применяют дополнительные базовые цвета (см. разд. 1.3.10), системы управления цветом (см. разд. 1.3.11) и печать плашечными цветами.

1.3.7. Модели HSB и HSL

В предшествующих разделах уже упоминались такие характеристики цвета, как цветность, насыщенность и яркость. Уточним их определения.

Цветность (цветовой тон) или хроматика – числовая характеристика, имеющая одинаковое значение для всех оттенков одного цвета и различные значения для любой пары оттенков разных цветов. Определяет расположение цвета в спектре. В компьютерной графике цветность обозначают первой буквой слова hue (оттенок) – H. Цвета с различной цветностью описывают названиями на естественном языке (например, голубой, оранжевый) или указывают их местоположение на цветовом круге в градусах (см. рис. 1.3.10). Например, зеленому цвету соответствует значение Н120°, а синему – Н240°.

Насыщенность – числовая характеристика цвета, задающая соотношение между количеством энергии, переносимой световыми волнами, лежащими в диапазоне, соответствующем цветности, и всеми остальными волнами светового потока. Она эквивалентна величине, на которую хроматический цвет отличается от равного ему по яркости ахроматического. Цветам с различной насыщенностью ставят в соответствие выраженную в процентах относительную величину, определяющую местоположение заданного цвета на монохроматической шкале, в которой цветом переднего плана является чистый спектральный цвет, а фоновым – белый. Насыщенность 50 означает, что мы имеем дело с 50 %-ным оттенком спектрального цвета. В компьютерной графике насыщенность обозначают первой буквой слова saturation (насыщенность) – S. На цветовом круге (см. рис. 1.3.10, а) цвета равной насыщенности располагаются вдоль концентрических окружностей, а все степени насыщенности одного цвета можно проследить вдоль радиуса, соединяющего белую точку в центре и точку спектрального цвета на окружности.

Яркость – это энергетическая характеристика света, пропорциональная энергии, переносимой световым потоком. Визуально она воспринимается как величина, на которую цвет отличается от черного. В пределах курса компьютерной графики яркость рассматривается в связи с ее визуальным восприятием как величина, дополнительная к количеству черного, добавленного в какой-либо другой цвет. В компьютерной графике яркость обозначают первой буквой слова brightness (яркость) – B. Яркость измеряется в процентах, причем В0 % соответствует черному цвету, В100 % – отсутствию добавленного черного. На цветовом круге (см. рис. 1.3.10, б) цвета равной яркости располагаются вдоль концентрических окружностей, а все степени яркости одного цвета можно проследить вдоль радиуса, соединяющего черную точку в центре и точку спектрального цвета на окружности.

На основе цветности, насыщенности и яркости построена цветовая модель HSB. Важную роль в ней играет цветовой круг. Цветовое пространство этой модели можно рассматривать как "стопку" лежащих друг на друге модификаций цветового круга. Нижнее основание стопки – цветовой круг с яркостью цветов В0 %. Визуально он воспринимается как черный. Верхнее основание – цветовой круг, в котором все цвета располагают максимальной яркостью в100 % (рис. 1.3.15, а).

Рис. 1.3.15. Цветовое пространство цветовой модели HSB: а – сечения цветового пространства, соответствующие фиксированным значениям яркости; б – устройство системы цветовых координат

Примечание

Ось S цветовых координат модели HSB не имеет фиксированного направления, значения этой координаты – это расстояние от центра цветового круга до точки, соответствующей заданному цвету.

Модель HSB относительно проста и хороша для восприятия, а также удобна в работе, но перед выводом на экран представленные в соответствии с ней цвета приходится преобразовывать в цветовое пространство RGB, а перед выводом на печать – в цветовое пространство CMYK. Второй существенный недостаток этой модели состоит в нелинейности визуального восприятия яркости. В силу физиологических особенностей зрения, хроматические цвета с одинаковым значением яркости (например, желтый и фиолетовый) не выглядят одинаково светлыми. Для устранения этого недостатка была введена искусственная характеристика цвета – светлота (lightness). Светлотой называется характеристика визуального восприятия яркости цвета. Цвета с равными значениями светлоты выглядят одинаково яркими.

Модификация цветовой модели HSB с заменой яркости на светлоту называется HSL.

Примечание

Во многих программах компьютерной графики и в литературе встречается упоминание цветовой модели HSV. В разных случаях эта аббревиатура соответствует либо модели HSB, либо модели HSL, либо представляет собой их собирательное наименование.

1.3.8. Модель Lab

В основе концепции цветового круга и построенных на его основе моделей цвета HSB и HSL лежит применение монохромных шкал, в которых в качестве одного из базовых цветов используется ахроматический цвет (черный или белый). Именно этот выбор является причиной неравноконтрастности – явления, из-за которого расстояние между точками цветового пространства не пропорционально визуальной степени различия соответствующих им цветов. Для измерения цвета (колориметрии) это очень существенный недостаток, а без колориметрии невозможно точное воспроизведение цвета в полиграфии. Поэтому в 1976 году CIE предложила цветовую модель, специально разработанную для достижения равноконтрастности – Lab.

Примечание
<< 1 ... 9 10 11 12 13 14 15 16 17 ... 21 >>
На страницу:
13 из 21