Оценить:
 Рейтинг: 4.6

Чердак. Только физика, только хардкор!

Год написания книги
2016
<< 1 2 3 4 5 >>
На страницу:
3 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля
При увеличении размеров увеличивается масса тела, поэтому должны увеличиваться и подъемная сила, и мощность соответственно. Только вес тела растет пропорционально кубу размеров, а мускульная мощность – пропорционально поперечному сечению мышц, то есть квадрату размеров. Построив графики квадрата и куба, можно увидеть, что сначала сила мышц и мощность возрастают быстрее, чем масса, но в какой-то момент все меняется. Если предположить, что дрофа находится где-то на пересечении этих графиков, то человек – в области, где мощность уже слишком мала для полета с крыльями.

Что касается огромных ископаемых птиц и птеродактилей массой до 200 кг, то они вряд ли умели свободно летать. Скорее всего они просто планировали с большой высоты. И только изредка, ценой больших усилий, могли набрать немного высоты. Но существует много гипотез, описывающих полет птеродактилей, и споры об этом не утихают до сих пор.

Самолет на мускульной тяге

И все же стоит отметить, что определенных успехов людям удалось добиться. Правда, речь идет о самолетах с неподвижными крыльями, но на мускульной тяге. В 1988 году был поставлен рекорд дальности полета на самолете, который приводился в движение мускульной силой. Греческий велосипедист Канеллос Канеллопулос перелетел на расстояние 115 км чуть меньше, чем за 4 часа!

А в 2013 году человеку на мускульном вертолете удалось провисеть в воздухе 64 секунды и достичь высоты более 3 метров. Что касается машущих крыльями аппаратов, то тут до сих пор особых успехов нет.

Так что вряд ли мы сможем летать как птицы.

2.2. Почему насекомые маленькие?

Насекомые – маленькие создания, наполняющие нашу жизнь и красивыми красками, и лишними приспособлениями в доме, и полезными продуктами. Это огромный класс животного мира, включающий в себя бессчетное множество видов и подвидов (количество видов насекомых по крайней мере в 6 раз больше, чем остальных видов животных, вместе взятых). Но, несмотря на огромное многообразие, среди них нет довольно больших особей. Например, один из самых крупных жуков, дровосек-титан, достигает не больше 18 сантиметров в длину. Почему же так?

Точного ответа на этот вопрос никто не знает. Есть несколько теорий, и мы рассмотрим самые правдоподобные из них.

Экзоскелет

Согласно одной из теорий, все дело в том, что насекомые слишком хрупкие. Если увеличить насекомое до размеров, например, человека, то его хрупкое тело не выдержит своей тяжести. Насекомые – это беспозвоночные. У них нет скелета, и все органы кое-как держатся на хитиновом экзоскелете, опоясывающем все тело. Для небольших животных это очень удобно: экзоскелет выполняет одновременно несущую, защитную и многие другие функции.

Но если мы будем увеличивать насекомое, то выдержит ли это экзоскелет? Сложно сказать, ведь у нас нет экспериментальных доказательств. Однако мы можем провести некие аналогии. Например, с родственниками насекомых – ракообразными. Самые большие из них достигают трех метров в размахе. И хотя эти животные обитают под водой, где вес тела практически нулевой, они не ломаются, даже если вытащить их на сушу, ведь их хитиновый внешний скелет достаточно прочен.

Можно провести аналогии и с черепахами. Из хитина можно сделать такой же большой и прочный панцирь, как у галапагосских черепах.

К тому же, если представить скелет насекомого в виде цилиндрической трубки соответствующей прочности, то при увеличении размеров трубки ее прочность будет увеличиваться как раз в соответствии с увеличением массы животного. Поэтому внешний хитиновый скелет вряд ли является ограничивающим фактором для роста насекомых.

Слишком вкусные

Существует и другая теория, согласно которой насекомые не вырастают до больших размеров, потому что в таком случае они становятся слишком уязвимыми во время линьки. При росте насекомому периодически приходится сбрасывать свой панцирь и отращивать новый, ведь он не растет вместе с ним. Однако рост наблюдается у насекомых только в личиночной стадии, в которой скелет и так достаточно мягок и не обладает добротной защитной функцией.

Кровеносная система

Возможно, насекомые ограничены в размерах из-за очень несовершенной кровеносной системы. У них нет сосудов, а внутренние органы просто омываются кровью. Если увеличить насекомых в размерах, то под действием гравитации вся кровь будет скапливаться внизу и кровоснабжение отдельных органов будет затруднено.

Дыхательная теория

Но, пожалуй, самой правдоподобной кажется дыхательная теория. Дело в том, что насекомые дышат не так, как человек. У них нет легких, а дышат они через трахеи. Это такие трубочки, которые пронизывают все их тело. По бокам насекомого есть специальные отверстия – дыхальца. Через них воздух попадает в трахеи, которые ветвятся, как дерево, и достигают практически каждой клеточки тела насекомого.

Чем-то это напоминает кровеносную систему человека, в которой кислород переносится потоком крови в капилляры, и тем же потоком уносится ненужный углекислый газ. Развитые, крупные насекомые, например, богомолы, прокачивают воздух через трахеи дыхательными движениями. Однако они не могут добиться направленного движения воздуха в мельчайших трахеях из-за капиллярного сопротивления, поэтому туда он проникает только посредством диффузии (то есть из-за хаотичного движения молекул воздуха) максимум на 1–2 сантиметра. Это как пытаться задуть песок в маленькие отверстия: можно дуть сильнее, но больше песка через них не пройдет.

Вот тут мы и упираемся в ограничение размеров. Если насекомые будут слишком крупными, то, во-первых, трахеи будут очень длинные, поэтому воздух будет застаиваться и дыхание станет невозможным. А во-вторых, если уж очень хочется увеличиться в размерах и не задохнуться, то придется трахеи сделать настолько толстыми, что останется очень мало места для других органов.

Эта теория подтверждается экспериментами, в которых насекомых выращивали в условиях повышенного содержания кислорода. Если его содержание в атмосфере больше обычного, то даже в более длинные трахеи он будет поступать в достаточном количестве, что делает возможным увеличение размеров тела. Именно это и наблюдалось в экспериментах.

И занимательно то, что такой эксперимент для нас уже давным-давно провела матушка-природа. Насекомые – очень древние животные, намного старше динозавров, а тем более млекопитающих и людей. 300 млн лет назад атмосфера состояла из кислорода где-то на 32 %, что в полтора раза больше, чем сейчас. Поэтому насекомые были больше в размерах и могли достигать 65 см в размахе крыльев!

Не исключено, что личинки древних насекомых дышали через кожу и никак не могли этим управлять. Как известно, кислород – сильный окислитель и его чрезмерное количество вредно для здоровья. Чтобы этого избежать, личинки вырастали до особо крупных размеров, при которых весь кислород усваивался в должной мере.

Как мы видим, дыхательная теория является самой продуманной и логичной. К тому же она подтверждается разными направлениями науки.

2.3. Почему светятся светлячки?

Почему светятся светлячки? Почему, где и как происходит это чудо возникновения частиц света, фотонов? Может быть, микроскопические волшебные гномики включают в клетках огоньки?

Давайте сначала рассмотрим более общий вопрос, ответ на который физики нашли уже очень давно: где рождается свет? Представим себе атом и электроны в нем. Они спокойно вращаются на своих орбитах вокруг ядра. И тут бац! По каким-то причинам один из них может перейти в возбужденное состояние, у него появляется очень много лишней энергии, и он переходит на более высокую орбиту. В таком возбужденном состоянии электрон находится некоторое время, но потом он релаксирует и приходит в свое обычное состояние. При таком переходе электрон излучает излишек своей энергии в виде фотонов, то есть частиц света.

Самое интересное, что фотон всегда возникает одинаково, а вот способов предварительно возбудить электрон очень много. И самый простой из них – это нагреть тело, чтобы атомы с огромной скоростью бились друг о друга. Именно это происходит в пламени свечи, костре, обычной лампочке. Действительно, если нагреть любое тело до высокой температуры, то оно будет светиться. Даже ваша кошка или брокколи. Попробуйте нагреть гвоздь на плите, и он будет светиться красноватым цветом. Этому подвержены все тела, и мы никак не можем это контролировать.

Но, конечно же, светлячки не нагреваются до бешеных температур. В них происходит так называемая биолюминесценция. В этом процессе возбуждение электронов происходит за счет химических реакций с выделением энергии. Обычно эта энергия тратится на нагрев тела. Но у светлячков ее настолько много, что она идет на возбуждение электрона с последующим излучением фотона. Это реакция окисления люциферина. И регулируя окисление кислорода, светлячок может мигать и всячески управлять свечением. В отличие от обычной лампочки, в которой большая часть энергии тратится на тепло и КПД в 5–10 %, светлячок переводит в световое излучение 90 % всей энергии.

Помимо светлячков, существуют и другие организмы, которые освоили биолюминесценцию: грибы, медузы, глубоководные рыбы. И существует еще очень много видов так называемой люминесценции.

Например, фотолюминесценция. В ней возбуждение фотонов происходит под действием внешнего света. Электроны поглощают энергию падающих фотонов и переходят в возбужденное состояние. При этом существуют вещества, в которых электронам вообще запрещено переходить обратно в исходное состояние законами квантовой физики. Однако они это все-таки делают. Если такое вещество предварительно осветить ярким светом, то электроны быстро перепрыгнут в возбужденное состояние и потом долго будут переходить обратно. С такими веществами мы знакомы, это любые фосфорные штучки. А есть вещества, в которых электроны релаксируют практически сразу после возбуждения. Только поглощают они одно, а излучают немножечко другое. Ну, например, поглощают невидимый ультрафиолет и излучают зеленое свечение. Именно поэтому флуоресцентные краски так ярко светятся в ночном клубе. Именно так работают все отбеливатели: они поглощают ультрафиолет и излучают в видимом диапазоне, поэтому белье кажется намного светлее.

И кратко о других любопытных видах люминесценции.

Радиолюминесценция. В ней электроны возбуждаются и излучают свет благодаря радиоактивному излучению. Такие приборы служат десятки лет, а защитное стекло полностью защищает от небольшой радиации.

Триболюминесценция возникает при раскалывании и разрушении тел за счет энергии и деформации кристаллической решетки. Наблюдать это свечение можно при раскалывании кристаллов сахара или песчинок в воздухе при взлете вертолета.

Сонолюминесценция. Если обычную воду облучать ультразвуком, то в ней возникают области сжатия и разрежения. И разрежение может быть настолько сильно, что вода может разорваться и в ней образуется микропузырек с практически вакуумом внутри. Через мгновение этот бедный пузырек начинает сжиматься и схлопывается. И в последний момент перед тем как исчезнуть, он выпускает вспышку голубоватого цвета. Это возникает из-за моментального нагрева до 5000 Кельвинов. Однако сонолюминесценция по-прежнему остается самым неизученным видом люминесценции.

2.4. Почему животные симметричны?

Приблизительно 75000 человек на Земле обладают зеркальным расположением внутренних органов – сердце у них располагается справа, а печень слева. Это называется транспозицией внутренних органов, объясняется разными факторами, не передается по наследству и никак не мешает жизни этих людей.

Как видите, природа может запросто отразить нас, словно в зеркале, и ничего особо не поменяется. Ну а внешне и отражать ничего не надо, ведь люди, как и почти все остальные животные, обладают практически идеальной внешней зеркальной симметрией. Ее еще называют билатеральной.

Но зачем нужна эта симметрия? Действительно, у высших животных все органы обладают узкой специализацией: руки, ноги, голова, хвост – все они выполняют разные функции. Отсюда понятно, что верхняя и нижняя, передняя и задняя части туловища должны отличаться. Однако, несмотря на все это, левая и правая стороны тела абсолютно идентичны, как будто природа забыла придумать, с чем будет лучше справляться левая сторона, а с чем – правая. Или дело в другом?

Эволюция симметрии

Ответ довольно прост. Билатеральная симметрия – это, можно сказать, рудимент, особенность, которая передалась нам от наших предков, но при этом не мешала дальнейшей эволюции и осталась, хотя особо сильно мы в ней не нуждаемся.

Давайте перенесемся на 4 миллиарда лет назад. На заре возникновения жизни на Земле, когда все живые организмы были еще одноклеточными, самой идеальной формой для них был шар. Это диктовалось тем, что взаимодействовать с окружающей средой им приходилось во всех направлениях, ни одно из которых особо не выделялось, отсюда и такая форма. То есть тела были сферически симметричны: как их ни поворачивай, они похожи сами на себя. К тому же шар, при заданном объеме, обладает минимальной площадью поверхности, что достаточно экономно и практично.

Но в процессе эволюции организмы усложнялись и увеличивали свою массу. И вот тут вступила в действие гравитация! Из-за нее у живых существ появилась асимметрия по направлению верх – низ. Сверху теперь располагались преимущественно органы чувств, рот. Внизу – средства передвижения. Но осталась симметрия по окружности – радиальная. Можно было вращать тело вокруг вертикальной оси, и ничего не менялось.

Следующий виток эволюции начался, когда организмы поняли, что неплохо было бы перемещаться. Например, чтобы есть друг друга. Тогда появились хищники и жертвы. Тем и другим понадобились скорость и внимание: одним – чтобы догонять, другим – чтобы убегать. Так и появилась асимметрия по направлению перед – зад. Спереди расположились органы восприятия, мозги, рот – в общем, самое важное. Сзади – все остальное.

А вот симметрию между левой и правой сторонами эволюция не затронула. Эта симметрия эволюции никак не мешала, наоборот, она дублировала некоторые органы, и это было даже полезно. Например, два уха нужно, чтобы по задержке сигнала определять, откуда пришел звук. Два глаза необходимо для бинокулярного, объемного зрения. Даже ноздрей нужно две! Хотя, казалось бы, мы можем обойтись и одной. Дело в том, что почти всегда воздух через одну ноздрю движется медленней, чем через другую. Благодаря этому мы можем почувствовать запахи, которым для восприятия нами требуется немного больше времени, чем обычно. Таким образом, две ноздри расширяют диапазон доступных нам ароматов.

Что касается асимметрии внутренних органов, то она появилась из-за их чрезмерного усложнения. Заметьте, это проявляется только в пищеварительной системе – вы только представьте, что вы едите! Для переваривания всего этого нужен целый парк органов! И это чудо, что они хоть как-то поместились в организме, пусть даже несимметрично. И в кровеносной системе то же: сердце смещено из-за возникновения второго круга кровообращения. Если посмотреть на животных попроще (червяков, насекомых, рыб), то мы увидим, что у них внутренние органы абсолютно симметричны.

Другие виды симметрии

Кстати, и другие виды симметрии в природе тоже продиктованы взаимодействием с окружающей средой.

<< 1 2 3 4 5 >>
На страницу:
3 из 5

Другие аудиокниги автора Дмитрий Побединский