Оценить:
 Рейтинг: 4.67

Евклидово окно. История геометрии от параллельных прямых до гиперпространства

Год написания книги
2014
<< 1 2 3 4 5 >>
На страницу:
3 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

с другой стороны. Поскольку m – четное, его можно записать как 2q, при любом q. Если заменить m в m

= 2n

на 2q, получим 4q

= 2n

, что то же самое, что и 2q

= n

. Это означает, что n

, а следовательно, и n – четное.Мы только что доказали, что если с можно записать как с = m/n, то m есть нечетное, а n – четное. Получается противоречие, а значит, исходное допущение, что с можно записать как с = m/n, – ложное. Такого рода доказательства, когда мы допускаем отрицание того, что стремимся доказать, а потом показываем, что отрицание ведет к противоречию, называется reductio ad absurdum. Это одно из изобретений пифагорейцев, и поныне полезное для математики.] не может быть выражена ни в каком виде, провидцу, проповедующему, что числа – всё, было совсем не с руки. Что же теперь: менять философию? Дескать, числа – всё, кроме некоторых геометрических величин, которые нам кажутся совсем уж загадочными?

Соверши Пифагор простую вещь: назови он диагональ как-нибудь особо, например d, или еще того лучше – ?2 и сочти ее некой новой разновидностью числа, нашему гению удалось бы ускорить создание системы действительных чисел на много веков. Предприми Пифагор этот шаг, он предвосхитил бы революцию декартовых координат, поскольку за отсутствием численной записи необходимость как-то описать этот новый вид числа недвусмысленно подсказывала изобретение числовой оси. Однако вместо всего этого Пифагор отошел от своей весьма перспективной практики ассоциировать геометрические фигуры с числами и заявил, что некоторые длины не могут быть выражены через числа. Пифагорейцы назвали такие длины алогонами, «неразумными», ныне мы называем их иррациональными. У слова «алогон» – двойной смысл: оно к тому же еще и означает «непроизносимое». Пифагор предложил решить возникшую в его философии дилемму так, что полученное решение было затруднительно отстаивать, и поэтому, в соответствии с общей доктриной скрытности, он запретил своим последователям[42 - Muir, стр. 12–13.] раскрывать неловкий парадокс. В наши дни людей убивают много за что – из-за любви, политики, денег, религии, но не потому, что кто-то разболтал что-то о квадратном корне из двух. Для пифагорейцев же математика была религией, и поэтому когда Гиппас нарушил обет молчания, его убили.

Сопротивление иррациональному продолжалось еще тысячи лет. В конце XIX века, когда одаренный немецкий математик Георг Кантор создал революционный труд, в котором попытался как-то укоренить эти числа, его бывший наставник, хрыч по имени Леопольд Кронекер, «возражавший» против иррациональных чисел, категорически не согласился с Кантором и потом всю жизнь ставил ему палки в колеса. Кантор, не в силах вынести подобное, пережил нервный срыв[43 - Kramer, стр. 577.] и провел последние дни жизни в клинике для душевнобольных.

Пифагор тоже кончил не лучшим образом. Около 510 года до н. э. кто-то из пифагорейцев отправился в Сибарис – судя по всему, в поисках новых последователей. Сведений о том их странствии сохранилось мало; известно только, что всех убили. Позднее несколько сибаритов сбежало в Кротон от тирана Телиса, который незадолго до этого захватил власть в городе. Телис потребовал их выдачи. И тут Пифагор нарушил одно из своих главных правил: не вмешиваться в политику. Он уговорил кротонцев не выдавать беглецов. Разразилась война, Кротон победил, но Пифагору был нанесен непоправимый урон: у него завелись политические враги. Около 500 года до н. э. они атаковали пифагорейцев. Пифагор сбежал. Что с ним произошло дальше, не ясно: большинство источников утверждает, что он покончил с собой; однако есть и свидетельства того, что он тихо дожил остаток своих дней и умер почти столетним.

Пифагорейское общество просуществовало еще какое-то время после той травли – до следующей, случившейся примерно в 460 году до н. э., и в результате погибли практически все, за исключением нескольких последователей. Его учение дотянуло до 300-х годов до н. э. Воскресили его римляне – в первом веке до Р. Х., и оно стало главенствующей силой расцветающей Римской империи. Пифагорейство повлияло на многие религии того времени – александрийский иудаизм, например, дряхлеющие египетские верования и, как мы уже убедились, христианство. Во II веке н. э. пифагорейская математика вкупе со школой Платона получила новый толчок к развитию. Интеллектуальных потомков Пифагора в IV веке опять раздавила власть – восточно-римский император Юстиниан. Римляне терпеть не могли длинные волосы[44 - Gorman, стр 192–193.] и бороды греческих потомков философии Пифагора, а также их пристрастие к наркотикам вроде опия, не говоря уже об их нехристианских верованиях. Юстиниан закрыл академию и запретил преподавание философии. Пифагорейство еще померцало пару столетий, после чего растворилось в Темных веках примерно в VI веке н. э.

Глава 5. Манифест Евклида

Приблизительно в 300-е годы до н. э. на южном побережье Средиземного моря, чуть левее Нила, жил в Александрии человек, чья работа может потягаться по влиятельности с Библией. Его подход наполнил философию смыслом и определил суть математики вплоть до XIX века. Эта работа стала неотъемлемой частью высшего образования практически на все это время – и остается до сих пор. С восстановлением этого труда началось обновление средневековой европейской цивилизации. Ему подражал Спиноза. Им зачитывался Абрахам Линкольн. Его защищал Кант[45 - Спиноза, знаковый философ XVII века, писал «Этику» – свой главный труд – в стиле евклидовых «Начал», вплоть до определений и аксиом, с помощью которых, как он считал, строго доказывал теоремы. См. также «Историю западной философии» Бертрана Расселла: Bertand Russell, A History of Western Philosophy (New York: Simon & Schuster, 1945), стр. 572. Авраам Линкольн, еще будучи никому не известным юристом, изучал «Начала» с целью улучшить свои навыки логики, см.: Hooper, стр. 44. Кант читал евклидову геометрию неотъемлемой частью человеческого мозга, см. Расселл. [На рус. яз.: Бенедикт Спиноза, «Этика», М., СПб, Азбука, Азбука-Аттикус, 2012, пер. Я. Боровского, Н. Иванцова; Бертран Рассел, «История западной философии», М.: Академический проект, 2009, пер. В. Целищева. – Прим. пер.]].

Имя этого человека – Евклид. О его жизни нам неизвестно почти ничего. Ел ли он оливки? Ходил ли в театр? Был ли коренаст или росл? История не знает ответов на все эти вопросы. Нам ведомо лишь[46 - Heath, стр. 354–355.], что он открыл школу в Александрии, у него были блестящие ученики, он осуждал материализм, был довольно милым человеком и написал не менее двух книг. Одна из них, утерянный труд по коническим сечениям, стала основой для позднейшей исключительно важной работы Аполлония[47 - Kline, стр. 89–99, 157–158.], сильно продвинувшей науку навигации и астрономии.

Другая его знаменитая работа, «Начала», – одна из самых читаемых «книг» всех времен. История «Начал»[48 - Heath, стр. 356–370, см. также: Hooper, стр. 44–48. В 1926 году Хит лично продолжил историю «Начал», опубликовав свое издание, перепечатанное издательством «Доувер»: Sir Thomas Heath. The Thirteen Books of Euclid’s Elements (New York: Dover Publications, 1956).] заслуживает детективного романа не хуже «Мальтийского сокола»[49 - «Мальтийский сокол» (1930) – детектив-нуар американского писателя Сэмюэла Дэшилла Хэммета (1894–1961). – Прим. пер.]. Во-первых, это не книга в буквальном смысле, но собрание из тринадцати свитков папируса. Ни один оригинал не сохранился – они передавались из поколения в поколение чередой переизданий, а в Темные века чуть было не исчезли совсем. Первые четыре свитка Евклидова труда в любом случае – не те самые «Начала»: ученый по имени Гиппократ (не врач-тезка) написал «Начала» где-то в 400-х годах до н. э., и они-то, судя по всему, являются содержимым этих первых свитков, хотя оно никак не атрибутировано. Евклид никак не претендовал на авторство этих теорем. Свою задачу он видел в систематизации греческого понимания геометрии. Он стал архитектором первого осмысленного отчета о природе двухмерного пространства, созданного одной лишь силой мысли, без всяких отсылок к физическому миру.

Важнейший вклад Евклидовых «Начал» сводился к передовому логическому методу: во-первых, Евклид объяснил все термины введением точных определений, гарантирующих понимание всех слов и символов. Во-вторых, он прояснил все понятия, предложив для этого прозрачные аксиомы или постулаты (эти два термина взаимозаменяемы), и отказался от применения неустановленных выводов или допущений. И наконец, он выводил логические следствия всей системы лишь с использованием правил логики, примененной к аксиомам и ранее доказанным теоремам.

Вот зануда и привереда, а? Зачем уж так настаивать на доказательстве малейшего утверждения? Математика – вертикальное сооружение, которое, в отличие от архитектурной постройки, рухнет, если хоть один математический кирпичик окажется битым. Допусти в системе невиннейшую погрешность – и пиши пропало, в ней уже ничему нельзя доверять. По сути, теорема логики утверждает:[50 - Kline, стр. 1205.] если в систему вкралась хоть одна ложная теорема – неважно, о чем она, – этого будет достаточно для доказательства, что 1 = 2. Говорят, однажды некий скептик припер к стенке логика Бертрана Расселла, желая возразить против этой уничтожающей теоремы (хотя в итоге говорил об обратном). «Вот что, – рявкнул усомнившийся, – допустим, один равно два, докажите, что вы – Папа Римский». Расселл, по свидетельствам, задумался на миг, после чего ответил: «Папа и я – двое, следовательно, Папа и я – одно».

Доказательство каждого утверждения означает, среди прочего, еще и то, что интуицию, хоть она и ценный поводырь, следует проверять на пороге доказательства. Фраза «это интуитивно понятно» – неподходящий шаг для доказательства. Слишком уж мы падки на всякую очевидность. Представим, что мы разматываем клубок шерсти вдоль экватора Земли, все 25 000 миль. А теперь представим то же самое, но в футе над экватором. Насколько больше ниток нам потребуется для этого? На 500 футов больше? Или на 5000? Упростим задачу. Представим теперь, что раскатываем один клубок вдоль поверхности Солнца, а второй – в футе над его поверхностью. К какому клубку нужно добавить больше ниток – к тому, что мы разматываем в футе от Земли или в футе от Солнца? Большинству из нас интуиция подсказывает «вокруг Солнца», однако ответ на самом деле таков: одинаковое количество, равное 2 футам, т. е. примерно 6 футов 3 дюйма.

Давным-давно была такая телевизионная программа «Поспорим»[51 - «Let’s Make A Deal» – американская телевикторина телеканала «Эн-би-си», транслировавшаяся с 1963 по 1968 гг. – Прим. пер.]. Участника помещали напротив трех подиумов, скрытых занавесами. На одном подиуме находился какой-нибудь ценный объект – автомашина, к примеру, а на двух других – какая-нибудь ерунда, утешительный приз. Допустим, участник выбирал второй подиум. Ведущий затем открывал один из двух оставшихся занавесов, скажем – третий. За ним, положим, находится утешительный приз, следовательно, настоящий приз – либо за первым занавесом, либо за вторым, который участник выбрал изначально. Ведущий далее спрашивает участника, станет ли он менять свой выбор – т. е. выберет ли теперь первый занавес. Вы бы изменили решение? Интуитивно кажется, что вероятность выигрыша – пятьдесят на пятьдесят, хоть так, хоть эдак. Оно было бы так, если бы у нас не было никаких предварительных вводных, но они у нас есть: предыдущий выбор и действия ведущего в этой связи. Внимательный анализ вероятностей, начиная с исходного выбора и далее, или применение нужной формулы, называемой теоремой Байеса [Бейза][52 - Трудный выбор, на котором основана программа «Поспорим», часто называют задачей Монти Холла, по имени ведущего программы. Проще всего разобраться в решении, нарисовав диаграмму-дерево, последовательно иллюстрирующую возможные варианты выбора. Этот метод применяется для наглядного описания теоремы Байеса в: John Freund, Mathematical Statistics (Englewood, Cliffs, NJ: Prentice-Hall, 1971), стр. 57–63. [Здесь и далее по тексту в квадратных скобках имена собственные даются в соответствии с произносительной нормой в тех случаях, когда она расходится с привычным написанием. – Прим. пер.]], показали бы, что шансов больше, если выбор изменить. Таких примеров в математике – когда интуиция подводит нас, а выручает лишь произвольная формальная логика, – навалом.

Точность – еще одно свойство, необходимое математическому доказательству. Наблюдатель может измерить диагональ квадрата с единичной стороной и получить результат 1,4, а с более точными приборами – 1,41 или даже 1,414, и как бы нам ни хотелось принять подобное приближение как достаточное, оно не даст нам получить эпохальное прозрение: это значение длины – величина иррациональная.

Крошечные количественные изменения могут иметь громадные качественные последствия. Вспомним государственные лотереи. Не теряющие надежду неудачники частенько пожимают плечами и говорят: «Не сыграешь – не выиграешь». Это правда, не поспоришь. Но правда и то, что шансы на выигрыш у тех, кто покупает лотерейный билет, и у тех, кто нет, отличаются на малюсенькую долю процента. Что произойдет, если лотерейная комиссия за явит, что решила округлить ваши шансы на выигрыш с 0,000001 % до нуля? Изменение почти неприметное, но поток наличности от продаж оно изменит еще как.

Фокус Пола Карри

Трюк, изобретенный фокусником-любителем Полом Карри[53 - Martin Gardner, Entertaining Mathematical Puzzles (New York: Dover Publications, 1961), стр. 43. [На рус. яз.: Гарднер М., «Математические досуги», М: «Мир», 1972, пер. Ю. Данилова. – Прим. пер.]] (см. предыдущую страницу), жившим в Нью-Йорке, – отличный геометрический пример. Возьмем квадратный лист бумаги и нарисуем на нем сетку из меньших квадратов семь на семь. Разрежем лист на пять частей и переложим их так, как показано на рисунке. В результате получим «квадратный пончик» – квадрат того же размера, что и исходный, однако по центру не будет хватать одного квадратика. Куда подевался этот квадратик? Мы что же, доказали теорему о том, что цельный квадрат равен по площади пончику?

Фокус состоит в том, что при пересборке квадрата фрагменты ложатся чуточку внахлест, и фигура в результате получается слегка жульнической – или, скажем так, приблизительной. Второй сверху ряд клеток получается чуть-чуть выше, а весь квадрат – на

/

длиннее по вертикали, чем должен быть, и этого как раз достаточно, чтобы набралась площадь недостающего квадратика. Но если бы нам доступно было измерение длин с точностью лишь до 2 %, мы бы не уловили разницу между этими двумя фигурами и впали бы в искушение сделать мистический вывод, что площади квадрата и «квадратного пончика» равны друг другу.

Учтены ли как-то подобные малые расхождения в теориях пространства? Одной из путеводных идей в создании общей теории относительности, гениальной теории об искривлении пространства, послужило Альберту Эйнштейну именно отклонение перигелия Меркурия от классической ньютоновской теории[54 - История про трудности с перигелием Меркурия изложена в: John Earman, Michael Janssen, and John D. Norton, eds., The Attraction of Gravitation: New Studies in the History of General Relativity (Boston: The Center for Einstein Studies, 1993), стр. 129–149. А еще есть хорошее, хоть и краткое, изложение этой же темы в: Abraham Pais, Subtle Is The Lord (Oxford: Oxford University Press, 1982), стр. 22, 253–255; цитата Леверье дана на стр. 254; «высшая точка» – на стр. 22. Геометрия всей этой истории изложена в: Resnikoff and Wells, стр. 334–336.]. Согласно теории Ньютона, планеты движутся по идеальным эллиптическим орбитам. Точка, в которой планета ближе всего к Солнцу, называется перигелием, и, если теория Ньютона верна, планета должна ежегодно проходить строго через эту точку. В 1859 году в Париже Урбен Жан Жозеф Леверье сообщил, что перигелий Меркурия постоянно смещается – самую малость, всего 38 секунд в столетие, что, конечно же, никаких практических последствий не имеет. И тем не менее такое отклонение почему-то происходит. Леверье назвал это «чудовищным затруднением, достойным внимания астрономов». К 1915 году Эйнштейн достаточно развил свою теорию – и вычислил орбиту Меркурия; в эти расчеты обнаруженное отклонение вполне вписалось. По словам биографа Эйнштейна Абрахама Пайса, это открытие стало «высшей точкой его научной жизни. Он был так взбудоражен, что три дня не мог работать». Каким бы малым ни было это отклонение, его объяснение привело к падению классической физики.

Целью Евклида было построить систему так, чтобы в ней не оставалось места для нечаянных допущений, основанных на интуиции, угадывании или приблизительности. Он ввел двадцать три определения[55 - Три хороших современных обзора «Начал» Евклида есть в: Kline, Mathematical Thought, стр. 56–88; Jeremy Gray, Ideas of Space (Oxford: Clarendon Press, 1989), стр. 26–41; Marvin Greenberg, Euclidean and Non-Euclidean Geometries (San Francisco: W. H. Freeman & Co., 1974), стр. 1–113.], пять геометрических постулатов и пять дополнительных постулатов, которые он назвал «Общими утверждениями». На этом фундаменте он доказал 465 теорем – практически все геометрическое знание его времени.

Евклид дал определения точке, линии (которая, согласно определению, может быть искривленной), прямой линии, окружности, прямому углу, поверхности и плоскости. Некоторые понятия он определил довольно точно. «Параллельные прямые, – писал он, – это прямые линии, которые, находясь на одной плоскости, продолженные до бесконечности в обоих направлениях, ни в одном из этих направлений не пересекаются».

Окружность, по словам Евклида, есть «плоская фигура, обозначенная одной линией (кривой) так, что все прямые линии, пересекающие ее и еще одну из точек внутри ее, называемую центром, равны друг другу». О прямом угле сказано так: «Когда прямая линия пересекает другую прямую линию, а образующиеся соседние углы равны друг другу, любой из этих углов – прямой».

Некоторые другие Евклидовы определения – например, точки или прямой – довольно расплывчаты и бесполезны: прямая – это «та, что лежит равномерно на всех точках, что на ней помещены». Это определение, вероятно, возникло из строительной практики – там прямоту линий проверяли, глядя из некой точки вдоль проверяемой прямой. Чтобы вникнуть в это определение, нужно загодя иметь в уме понятие прямой. Точка есть «то, у чего нет частей» – еще одно определение, граничащие с бессмыслицей.

Евклидовы общие утверждения более элегантны. Эти внегеометрические логические утверждения[56 - Kline, стр. 59.], судя по всему, Евклид считал проявлениями бытового здравого смысла – в отличие от постулатов, что были вполне геометричны. Эту разницу обозначил ранее еще Аристотель. Всесторонне взвесив эти интуитивные допущения, Евклид, по сути, добавил их к постулатам, однако явно желал отличать их от чисто геометрических утверждений. Одно то, что Евклид счел необходимым вообще эти утверждения предъявить, указывает на глубину мысли:

1. Равные одному и тому же равны и между собой.

2. И если к равным прибавляются равные, то и целые будут равны.

3. И если от равных отнимаются равные, то остатки будут равны.

4. И совмещающиеся друг с другом равны между собой.

5. И целое больше части[57 - Здесь и далее – пер. с греч. Д. Д. Мордухай-Болтовского. – Прим. пер.].

Если же отложить в сторону эти предварительные замечания, геометрическая суть евклидовой геометрии покоится на пяти постулатах. Первые четыре просты и могут быть сформулированы не без изящества. В современных терминах они звучат так:

Евклидов постулат параллельности

1. От всякой точки до всякой точки можно провести прямую.

2. Ограниченную прямую можно непрерывно продолжать по прямой.

3. Из всякого центра всяким раствором может быть описан круг.

4. Все прямые углы равны между собой.

Постулаты 1 и 2 вполне совпадают, похоже, с нашим житейским опытом. По ощущениям – да, мы понимаем, как нарисовать отрезок между двумя точками, и никогда не утыкались ни в какие препятствия в конце пространства, которые не дали бы нам продолжить прямую. Третий постулат несколько мудренее: он предполагает, что расстояния в пространстве заданы так, что длина отрезка при перемещении его с места на место не меняется, где бы ни рисовали круг. Четвертый постулат на вид прост и очевиден. Чтобы постичь его тонкости, вспомним определение прямого угла: это возникающий при пересечении двух прямых угол, равный всем остальным возникшим. Мы такое видели много раз: одна линия перпендикулярна другой, и все углы со всех сторон равны 90°. Но само определение этого не утверждает – оно даже не говорит нам о том, что значение этих углов всегда одно и то же. Можем вообразить мир, в котором эти углы будут равны 90°, если линии пересекаются в некой заданной точке, а если в какой-нибудь другой, то углы получатся другие. Постулат, утверждающий, что все прямые углы равны между собой, гарантирует, что такого быть не может. Это означает в некотором смысле, что линия выглядит одинаково по всей длине – своего рода условие прямизны.

Пятый же постулат Евклида, называемый постулатом параллельности, не настолько очевиден – в отличие от остальных. Это личное изобретение Евклида, а не часть великого корпуса знаний, который он документировал. Но ему, со всей очевидностью, собственная формулировка не нравилась – он изо всех сил старался избегать ее. Позднейшие математики ее тоже невзлюбили: она была недостаточно проста для постулата и требовала доказательства, как теорема. Вот она, в стиле, близком к оригиналу:

5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Постулат параллельности (стр. 61) предлагает проверочный критерий тому, сходятся две расположенные на одной плоскости прямые, расходятся или параллельны. Рисунок в этом смысле очень помогает пониманию.

Существует множество разных, но эквивалентных друг другу формулировок постулата параллельности. Одна особенно наглядно демонстрирует то, что постулат говорит нам о пространстве:

Если есть прямая и не лежащая на ней точка, то через эту точку можно провести одну и только одну прямую (в той же плоскости), параллельную данной.
<< 1 2 3 4 5 >>
На страницу:
3 из 5