Оценить:
 Рейтинг: 0

Энциклопедия клинического акушерства

Жанр
Год написания книги
2009
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
5 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

В дальнейшем происходят разрыв фолликула и выход яйцеклетки в полость маточной трубы. Разрыв фолликула провоцируется резким увеличением содержания эстрадиола, фолликулостимулирующего гормона, простагландинов и протеолитических ферментов, а также окситоцина и релаксина в фолликулярной жидкости.

На месте разорвавшегося фолликула образуется желтое тело. Оно синтезирует прогестерон, эстрадиол и андрогены. Большое значение для дальнейшего течения менструального цикла имеет образование полноценного желтого тела, которое может образоваться только из преовуляторного фолликула, содержащего достаточное количество гранулезных клеток с высоким содержанием рецепторов к лютеинизирующему гормону. Непосредственный синтез стероидных гормонов осуществляется клетками гранулезы. Производным веществом, из которого синтезируются стероидные гормоны, является холестерин, поступающий с током крови в яичник. Запускают и регулируют этот процесс фолликулостимулирующие и лютеинизирующие гормоны, а также ферментные системы – ароматазы. При достаточном количестве стероидных гормонов поступает сигнал о прекращении или снижении их синтеза. После выполнения желтым телом своей функции происходят его регресс и отмирание. Немаловажную роль в этом процессе играет окситоцин, оказывающий лютеолитическое действие.

Третий уровень

Представлен уровень передней долей гипофиза (аденогипофизом). Здесь осуществляется синтез гонадотропных гормонов – фолликулостимулирующего (ФСГ), лютеинизирующего (ЛГ), пролактина и многих других (тиреотропного, тиреотропина, соматотропина, меланотропина и т. д.). Лютеинизирующий и фолликулостимулирующие гормоны являются по своему строению гликопротеидами, пролактин – полипептидом.

Основной мишенью для действия ФСГ и ЛГ является яичник. ФСГ стимулирует рост фолликула, пролиферацию клеток гранулезы, образование рецепторов ЛГ на поверхности клеток гранулезы. В свою очередь ЛГ стимулирует образование андрогенов в тека-клетках, а также синтез прогестерона в лютеинизированных клетках гранулезы после овуляции.

Пролактин же стимулирует рост молочных желез и регулирует процесс лактации. Он оказывает гипотензивное действие, дает жиромобилизирующий эффект. Неблагоприятным моментом является повышение уровня пролактина, так как это тормозит развитие фолликулов и стероидогенез в яичниках.

Четвертый уровень

Представлен уровень гипофизотропной зоной гипоталамуса – вентромедиальными, аркуатными и дорсомедиальными ядрами. В них идет синтез гипофизотропных гормонов. Так как фоллиберин не выделен и на сегодняшний момент не синтезирован, то пользуются аббревиатурой общей группы гипоталамических гонадотропных либеринов (ГТ-РТ). Тем не менее доподлинно известно, что релизинг-гормон стимулирует выделение как ЛГ, так и ФСГ передней долей гипофиза.

ГТ-РГ гипоталамуса поступает по окончаниям аксонов, тесно соприкасающихся с капиллярами медиальной возвышенности гипоталамуса, в кровеносную систему, объединяющую гипоталамус и гипофиз. Особенностью этой системы можно назвать возможность тока крови в обе стороны, что важно в осуществлении механизма обратной связи.

Регуляция синтеза и поступления в кровоток ГТ-РГ достаточно сложна, имеет значение уровень эстрадиола в крови. Отмечено, что величина выбросов ГТ-РГ в преовуляторный период (на фоне максимального выделения эстрадиола) значительно выше, чем в раннюю фолликулиновую и лютеиновую фазы. Также отмечена роль в регуляции синтеза пролактина дофаминергических структур гипоталамуса. Дофамин тормозит выделение пролактина из гипофиза.

Пятый уровень

Представлен уровень надгипоталамическими церебральными структурами. Данные структуры воспринимают импульсы из внешней среды и от интерорецепторов, передают их через систему передатчиков нервных импульсов в нейросекреторные ядра гипоталамуса. В свою очередь проводимые эксперименты доказывают, что в регуляции функции гипоталамических нейронов, секретирующих ГТ-РТ, ведущая роль принадлежит дофамину, норадреналину и серотонину. А функцию нейротрансмиттеров выполняют нейропептиды морфиноподобного действия (опиоидные пептиды) – эндорфины (ЭНД) и энкефалины (ЭНК).

Также в регуляции менструального цикла не последнюю роль играет кора головного мозга. Имеются данные об участии амигдалоидных ядер и лимбической системы в нейрогуморальной регуляции менструального цикла.

В результате, подводя итоги всего вышеописанного, можно сделать вывод, что регуляция циклического менструального процесса – очень сложная система. Регуляция внутри самой этой системы может быть осуществлена как по длинной петле обратной связи (ГТ-РТ – нервные клетки гипоталамуса), так и по короткой петле (передняя доля гипофиза – гипоталамус) или даже по ультракороткой (ГТ-РТ – нервные клетки гипоталамуса). В свою очередь обратная связь может быть и отрицательной, и положительной. Например, при низком уровне эстрадиола в раннюю фолликулярную фазу усиливается выделение ЛГ передней долей гипофиза – отрицательная обратная связь. Примером положительной обратной связи является пик выделения эстрадиола, вызывающего выброс ФСГ и ЛГ. Примером же ультракороткой отрицательной связи может послужить увеличение секреции ГТ-РТ при снижении его концентрации в нейросекреторных нейронах гипоталамуса.

Следует отметить, что в нормальном функционировании циклических изменений половых органов немаловажное значение придается циклическим изменениям в других органах и системах организма женщины, к примеру преобладанию тормозных реакций центральной нервной системы, снижению двигательных реакций и т. д. В фазе пролиферации эндометрия отмечено преобладание парасимпатического, а в секреторной фазе – симпатического отделов вегетативной нервной системы. В свою очередь состояние сердечно-сосудистой системы в течение менструального цикла характеризуется волнообразными функциональными колебаниями. В настоящее время доказано, что в первой фазе менструального цикла капилляры несколько сужены, тонус всех сосудов повышен, а ток крови быстрый. А во вторую фазу капилляры, наоборот, несколько расширены, тонус сосудов снижен, а ток крови не всегда равномерный. Отмечены и изменения системы крови.

Процесс оплодотворения и дальнейшее развитие плодного яйца

Оплодотворением называется слияние зрелых мужской (сперматозоида) и женской (яйцеклетки) половых клеток (гамет), в результате чего образуется зигота, дающая начало новому организму.

Основным требованием для формирования гаметы и дальнейшего развития плодного яйца является зрелость сперматозоида и яйцеклетки, так как неполноценные клетки не способны к дальнейшему развитию зародыша. Процесс созревания яйцеклетки и сперматозоида сложен, завершением его является редукционное деление, в результате которого число хромосом в ядрах обеих клеток уменьшается вдвое. Ядро новой клетки, образовавшейся в результате оплодотворения, содержит полный набор хромосом (46).

Процесс образования сперматозоидов (сперматогенез) происходит в извитых семенных канальцах мужских гонад (яичках). Стенка семенного канальца состоит из тонкой соединительно-тканной основы и внутреннего сперматогенного слоя, образованного сертолиевым синцитием и располагающимися в его петлях мужскими половыми клетками в разных стадиях развития. Завершается процесс сперматогенеза образованием зрелых сперматозоидов в период полового созревания. Полному созреванию сперматозоидов предшествует двукратное (быстро следующее друг за другом) деление, в результате которого в ядре половой клетки остается половина хромосом (23).

Длина зрелого сперматозоида человека составляет 50–60 мкм. Строение сперматозоида представлено головкой, шейкой и хвостиком. Головка по форме овальная, слегка сплющенная с боков, содержит основную часть сперматозоида – ядро, окруженное тонким слоем цитоплазмы. Шейка сперматозоида состоит из протоплазмы, содержит видоизмененную центросому, которая способствует процессу дробления оплодотворенной яйцеклетки. Хвостик в свою очередь состоит из протоплазмы и служит приспособлением для активного передвижения сперматозоидов в жидкой среде. Благодаря колебательным движениям хвостика сперматозоид способен совершать самостоятельное движение головкой вперед и развивать скорость до 2–3 мм в минуту. У сперматозоидов также имеется способность двигаться против тока жидкости. Это способствует их движению из влагалища в матку, а из нее в маточные трубы, несмотря на то что ток жидкости имеет противоположное направление.

Непосредственно после деления сперматозоиды не обладают двигательной активностью, способность к движению они приобретают, попадая в секрет семенных пузырьков и предстательной железы.

Смесь сперматозоидов с секретом семенных пузырьков, предстательной и бульбоуретральных (куперовых) желез называется семенной жидкостью, или спермой. Сперма представляет собой студенистую массу беловатого цвета, реакция ее щелочная, имеет специфический запах. Во время полового сношения во влагалище изливается 3–5 мл спермы, в которой содержится 300–500 млн сперматозоидов. Главным местом попадания спермы является задний свод влагалища, куда обращена влагалищная часть шейки матки. Наружное отверстие канала шейки матки соприкасается со спермой, скопившейся в заднем своде, что благоприятствует проникновению сперматозоидов в матку.

Во время полового возбуждения происходит сокращение мускулатуры матки, наружный зев приоткрывается, слизистая пробка выступает из шейки и обволакивается спермой, попавшей в задний свод. По окончании полового сношения слизистая пробка со сперматозоидами втягивается обратно в шейку матки. В результате сперматозоиды попадают в шейку матки уже через 3 мин после излития спермы во влагалище. Отмечено, что слизь канала шейки матки становится наиболее проницаемой для сперматозоидов в течение нескольких дней до и в период овуляции. В это время слизь становится более жидкой, в ней образуется особая мукопротеиновая сеть, имеющая продольное расположение нитей. По этим нитям и происходит продвижение сперматозоидов. Следует отметить значение «цервикального фактора» в том, что в цервикальной слизи происходит гибель значительного количества аномальных сперматозоидов, постоянно присутствующих в семенной жидкости.

В дальнейшем по прохождении цервикального канала шейки матки, заполненного слизью, сперматозоиды попадают в полость матки, а затем в маточные трубы.

В связи с щелочной средой в полости матки и маточных трубах сперматозоиды сохраняют способность к движению в течение 3–4 дней. Однако способность к оплодотворению сперматозоиды сохраняют только в течение 24–48 ч. Сперматозоиды же, проникшие через маточные трубы в брюшную полость, погибают в течение суток. Благодаря самостоятельным активным движениям сперматозоидов уже через 0,5–1 ч они достигают полости матки, а через 1,5–2 ч попадают в маточные трубы, где и происходят встреча и слияние с яйцеклеткой. Также во время продвижения сперматозоида в матку и маточные трубы происходит завершение всех процессов, повышающих способность к оплодотворению – капитация. Капитация представляет собой сложный процесс приобретения сперматозоидом способности к проникновению через оболочки в яйцеклетку. В настоящее время считается, что для капитации спермы необходимо определенное соотношение гормонов в организме женщины и ее половых органах (матке, маточных трубах). Особое значение в этом отдается содержанию эстрогенов, которые повышают способность сперматозоидов к оплодотворению яйцеклетки.

Развитие и созревание яйцеклетки, как уже описывалось в предыдущей главе, происходят в яичниках и регулируются сложным механизмом гормональных и других видов воздействий. Рост фолликула происходит из первичного (премордиального) фолликула, состоящего из незрелой яйцеклетки, эпителиальных клеток вокруг нее и соединительной ткани. В первой фазе менструального цикла происходит созревание нескольких премордиальных фолликулов, но стадии полного созревания достигает обычно один фолликул, другие подвергаются регрессу в течение 24–48 ч. Зрелая яйцеклетка в свою очередь окружена прозрачной оболочкой, лучистым венцом, попадает из лопнувшего фолликула в брюшную полость. В маточную трубу яйцеклетка попадает благодаря присасывающим перистальтическим движениям трубы, создающей ток жидкости от воронки к маточному концу трубы.

Наибольшая способность к оплодотворению яйцеклетки отмечается сразу после овуляции и в течение 12–24 ч. При непроизошедшем оплодотворении происходит ее гибель.

Оплодотворение обычно происходит в ампулярной части маточной трубы.

Яйцеклетка, кроме блестящей оболочки, окружена несколькими слоями клеток яйценосного бугорка. Именно эти слои препятствуют проникновению сперматозоида в протоплазму яйцеклетки. В свою очередь сперматозоиды имеют специальный органоид – акросому, который помогает их проникновению в протоплазму яйцеклетки. Акросома представляет собой мембранный пузырек, расположенный на вершине головки сперматозоида. При контакте сперматозоида с клетками яйценосного бугорка выделяются специфические ферменты (около 10–12) – акросомальная реакция. Эти ферменты способствуют увеличению проницаемости лучистого венца и блестящей оболочки, в результате чего в яйцеклетку проникает один или несколько сперматозоидов. В норме пытаются проникать в яйцеклетку несколько сперматозоидов, однако после проникновения первого возникает своеобразный «барьер» для проникновения других. Основной механизм образования этого «барьера» заключается в кортикальной реакции, в ходе которой происходит выделение из яйцеклетки содержимого кортикальных гранул, которые ранее располагались под плазматической мембраной яйцеклетки.

Именно один проникший сперматозоид и участвует в оплодотворении яйцеклетки. В результате происходят слияние двух клеток и ассимиляция ядерного материала, что дает начало образованию единого ядра зиготы. Следует отметить, что, помимо слияния наследственности, находящейся в ядрах половых клеток, объединяется цитоплазматическая наследственность. Поэтому-то зигота, обладающая двойной наследственность, приобретает способность к активному размножению и дифференцировке. А в связи с повышенным обменом веществ в ней происходит очень быстрое ее развитие. Все не попавшие в яйцеклетку сперматозоиды погибают, и продукты их распада всасываются слизистой оболочкой маточных труб.

Вслед за процессом оплодотворения начинается дробление зиготы. Первое деление заканчивается образованием двух дочерних клеток – бластомеров. В дальнейшем процесс деления (сегментации) происходит асинхронно – 5, 8, 9, 11–12 бластомеров. В конечном итоге образуется комплекс бластомеров – морула. Размеры бластомеров значительно меньше материнских клеток, поэтому непосредственные размеры зародыша в стадии дробления не превышают размеров зиготы. В процессе дробления образуются два вида бластомеров: одни – более крупные и темные клетки, другие – наоборот, светлые и мелкие. Скопление более крупных и темных клеток, располагающихся в центре морулы, называют эмбриобластом. Из него впоследствии образуются клетки зародыша и некоторых внезародышевых частей. Светлые мелкие клетки постепенно обрастают эмбриобласт и окружают его со всех сторон. Данный наружный слой дает начало трофобласту – специфической, рано дифференцирующейся ткани, которая позднее обеспечивает имплантацию и зародыша питанием. При прохождении через трубы между зачатками трофобласта и эмбриобласта образуется небольшая полость, заполненная жидкостью, т. е. образуется бластоциста.

В процессе своего деления зародыш продвигается по маточной трубе к полости матки. Миграция его продолжается по времени 4–5 суток, после чего зародыш попадает в матку и имплантируется в ее эндометрий. Передвижение зародыша осуществляется за счет перистальтических движений маточной трубы, которые носят правильный ритмический характер. Вспомогательное значение при этом имеют:

а) мерцание ресничек покровного эпителия в сторону матки;

б) продольное расположение складок слизистой оболочки трубы;

в) выделение бокаловидными клетками секрета, который обволакивает морулу и увлажняет поверхность слизистой оболочки трубы.

Продольное расположение складок и секреция слизистой оболочки облегчают скольжение морулы по трубе к полости матки.

Процесс имплантации плодного яйца

При продвижении по маточной трубе и дроблении яйцо освобождается от клеток лучистого венца и прозрачной оболочки. Морула, попадающая в полость матки, напоминает тутовую ягоду. В дальнейшем она превращается в бластоцисту. Именно в этой стадии развития плодного яйца происходит процесс его внедрения в слизистую (децидуальную) оболочку матки, т. е. совершается процесс имплантации. В стадии бластоцисты для плодного яйца характерным является то, что часть более крупных клеток образует эмбриобласт, а остальные клетки – трофобласт.

Трофобласт способен выделять протеолитические, гликолитические и другие ферменты, которые растворяют ткани слизистой оболочки матки. Плодное яйцо оседает на поверхность слизистой оболочки, чаще на передней или задней стенке на уровне труб, трофобласт расплавляет покровный эпителий, железы, клетки стромы и сосуды слизистой оболочки матки и постепенно погружается в глубину функционального слоя слизистой оболочки. Течение процесса имплантации по времени не длительное: в течение первых 24 ч бластоциста погружается в слизистую оболочку более чем на половину, а за 40 ч – полностью. Заканчивается процесс имплантации полным внедрением плодного яйца в слизистую оболочку и зарастанием над ним отверстия. Полное заживление дефекта в эпителии и соединительной ткани завершается в течение 4–5 дней. Во время всего процесса имплантации отмечаются усиление васкуляризации и увеличение количества соединительно-тканных клеток, а также гликогена в клетках.

Сама слизистая готова к имплантации и находится в фазе секреции, при которой содержание всех необходимых для питания зародыша веществ максимально. Непосредственной питательной средой для зародыша в момент имплантации является расплавляющаяся под действием ферментов слизистая оболочка, которая содержит белки, липиды, витамины, соли и другие вещества, необходимые для питания зародыша в ранних стадиях его развития.

Формирование и развитие зародышевых оболочек

Сразу же после процесса имплантации отмечается быстрое развитие зародыша и его оболочек. На трофобласте отмечается образование выростов (ворсин), которые вначале из-за отсутствия в них сосудов носят название первичных ворсин. Эти выросты значительно увеличивают поверхность соприкосновения зародыша с эмбриотрофом. Наружный слой трофобласта вследствие утрачивания клеточных границ превращается в плазмодиотрофобласт – синцитий. В свою очередь внутренний слой трофобласта сохраняет свое клеточное строение и называется цитотрофобласт. В течение первых недель развития синцитий обладает выраженной способностью к проникновению в материнские ткани, поэтому он называется имплантационным синцитием. В дальнейшем отмечается выраженное снижение инвазивных свойств синцития, и возрастает способность к всасыванию питательных веществ (резорбционный синцитий).

В результате всех этих изменений наружная оболочка яйца называется ворсинчатой оболочкой – хорионом. Между ворсинами и слизистой оболочкой матки находится тканевый распад, а также циркулирует материнская кровь, излившаяся из поврежденных сосудов слизистой оболочки, отсюда и поступают к зародышу питательные вещества. Само пространство между слизистой оболочкой и ворсинами называется первичным межворсинчатым пространством. В начале оно окружает все плодное яйцо, тогда в более поздних стадиях развития межворсинчатое пространство остается только в области плаценты и называется вторичным межворсинчатым пространством.

Вместе с вышеописанными процессами происходит и развитие эмбриобласта. Его развитие начинается еще в маточной трубе, но особенно интенсивно он развивается после имплантации в матку. После имплантации клетки окружающие полость бластоцисты превращаются в мезобласт.

В одном сегменте бластоцисты происходит образование скопления клеток, в котором выделяют два узелка: эктобластический (эктобласт) и энтобластический (энтобласт). В центре этих узелков очень быстро образуется полость, вследствие чего эктобластический узелок превращается в эктобластический пузырек, а энтобластический узелок – в энтобластический пузырек. При помощи ножки эктобластический пузырек связан с трофобластом, из него образуется амниотическая полость. Стенки этой полости превращаются в амнион – водную оболочку. Эктопический пузырек расположен ближе к центру, и он превращается в желточную полость. Зачаток зародыша образуют клетки эктобласта и энтобласта, расположенные между амниотическим и желточными пузырьками.

В дальнейшем происходит увеличение полости экзоцелома, клетки мезенхимы оттесняются с одной стороны к хориону (трофобласту), а с другой – к амниотическому и желточному пузырькам и к зародышу, расположенному между ними. В результате стенки пузырьков и хорион становятся двухслойными. Зародышевый зачаток теперь представлен тремя зародышевыми листками: эктодермой, мезодермой и эндодермой. Из этих трех лепестков в дальнейшем образуются все ткани и органы плода.

По мере развития отмечается достаточно быстрое увеличение амниотического пузырька вследствие накопления в нем прозрачной жидкости. В результате стенка его приближается к ворсинчатой оболочке и примыкает к ней. При этом происходит исчезновение полости бластоцисты. Зародыш, располагавшийся между амнионом и желточным пузырьком, начинает вворачиваться в полость амниона и постепенно полностью погружается в него. Дальше по ходу увеличения амниотической полости желточный пузырек уменьшается, желточные сосуды запустевают, стенки подвергаются атрофии.

Также одновременно с развитием оболочек происходит и ряд других структурных изменений. Так из заднего конца первичной кишки зародыша образуется вырост – аллантоис (колбасовидная оболочка). Аллантоис подходит к ворсинчатой оболочке по той же ножке, которая соединяла амниотический пузырек с трофобластом. По аллантоису идут сосуды из тела зародыша к ворсинчатой оболочке. Эти ворсины врастают в каждую ворсину хориона. Данный процесс называется васкуляризацией хориона. С этого момента развивается кровообращение зародыша, обеспечивающее более интенсивный обмен между ним и организмом матери.

После завершения начальных стадий развития плод окружен амниотической жидкостью и тремя оболочками: децидуальной, ворсинчатой и водной. Децидуальная оболочка является материнской, так как она образована из слизистой оболочки матки, а водная и ворсинчатая – плодовые оболочки.

Децидуальная оболочка представляет собой видоизмененный в связи с беременностью функциональный слой слизистой оболочки матки, эта оболочка во время родов отторгается и изгоняется из полости матки вместе с другими оболочками и плацентой. Как уже упоминалось, в момент имплантации эндометрий матки находится в секреторной фазе, железы заполнены секретом, клетки стромы богаты гликогеном, липидами, гликопротеидами, мукополисахаридами и т. д. В слизистой оболочке обнаружены простагландины. Функциональный слой при этом разделяют на спонгиозный и компактный. Спонгиозный слой (stratum spongiosum) представлен железами, а компактный (stratum compactum) – округлившимися клетками стромы, между которыми проходят протоки желез. Имплантация плодного яйца значительно меняет структуру слизистой оболочки. Она значительно утолщается, становится сочной, железы наполняются секретом, дифференцировка на компактный и спонгиозный слои еще более четкая. Компактный слой также состоит из децидуальных клеток, имеющих крупные размеры, округлую или полигональную форму. Спонгиозный слой также состоит из желез, но их становится больше, имеются также небольшое количество стромы между железами и сосуды. Внедрившееся яйцо со всех сторон окружается слизистой оболочкой. В связи с этим имеется разделение децидуальной оболочки:
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
5 из 9