Оценить:
 Рейтинг: 4.5

100 великих рекордов авиации и космонавтики

Год написания книги
2008
Теги
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 17 >>
На страницу:
11 из 17
Настройки чтения
Размер шрифта
Высота строк
Поля

Впрочем, были и эксперименты, которые завершались вполне благополучно. Удачно слетал В. Хараханов в 1935 году. Тридцать лет спустя скопировал и испытал конструкцию Б. Павлова-Сильванского французский парашютист Жиль Деламар.

Но все это не более чем единичные попытки. Почему увлечение такими полетами не приобретает массовости? Ответ на этот вопрос дал в свое время еще Георгий Александрович Шмидт. Совершив свой 106-й прыжок буквально через день после гибели американца Девиса, Г. Шмидт сказал после приземления: «Я не могу никакими словами передать совершенно потрясающее чувство восхищения и наслаждения парящим полетом».

Однако практические его выводы были далеко не в пользу полетов на искусственных крыльях. Скорость снижения весьма велика, неосторожное движение, того и гляди, грозит срывом в штопор, считал Шмидт. Да и при всем умении далеко на таких крыльях все-таки не улетишь. И он рекомендовал искать наслаждение парящим полетом при помощи других технических средств. Полеты на дельтаплане, параплане, том же парашюте, когда его буксирует на длинном тросе быстроходный катер – все это позволяет получить наслаждение парящим полетом практически без всякого риска.

И все же даже в наши дни в мире осталось еще достаточно отчаянных сорвиголов, которые не могут жить без риска.

Современное западное парашютное мифотворчество приписывает изобретение нынешних костюмов-крыльев (wing suit) основателям флоридской компании Bird Man Роберту Печнику и Яри Куосмо.

Однако и у них был предшественник – француз Патрик де Гайардон. Он начал летать в 1990 году, используя костюм-крыло собственной конструкции. А в 1998 году, испытывая очередную модификацию своего костюма, де Гайардон тоже погиб.

Несмотря на столь трагические последствия, французы заразили идеей полета парашютистов во многих странах мира. Уже в 1999 году российские энтузиасты стали шить такие костюмы по собственным выкройкам. А Печник и Куосмо – серийно производить аналогичные комбинезоны с крыльями во Флориде.

«Все, кто летает в винг-сьютах, мечтают летать как птицы и в конце концов приземлиться на крыльях, без парашюта, – говорит профессиональный испытатель парашютов Владимир Шилин. – Однако людям тяжело летать: посмотрите, как устроены птицы и как устроен человек: у птичек легкие кости и мощные грудные мышцы. У людей же тяжелые кости и мало грудных мышц. Но зато мы умеем изобретать!»

Ныне более всего винг-сьюты привлекают бэйсеров – парашютистов, прыгающих с относительно невысоких объектов: скал, зданий, вышек, труб или мостов. Дело в том, что объектов, пригодных для бэйс-прыжков, в мире немного. Основное требование – они должны быть отвесными и не иметь опасных выступающих частей. Прыжки в костюмах-крыльях существенно расширяют диапазон таких объектов, позволяя огибать препятствия во время прыжка и менять направление полета вплоть до разворота на 180 градусов.

Проблема заключается в том, что поведение винг-сьютов недостаточно изучено и, стоя у края скалы, трудно оценить, хватит ли горизонтальной скорости для того, чтобы облететь гранитный выступ. А цена ошибки – жизнь…

Все это отлично известно Феликсу Баумгартнеру. Ведь он и сам из племени бэйсеров. Ранее он уже совершал аналогичный прыжок со статуи Иисуса Христа в Рио-де-Жанейро, а до этого – с 452-метровой башни Petronas Tower в Куала Лумпур. (Этот трюк, кстати, повторенный нашей каскадершей, вошел в недавний фильм «Код Апокалипсиса».)

Но Баумгартнер все же решил пойти (точнее, полететь) еще дальше. Он спрыгнет с самолета на высоте 9000 метров над британским берегом и пролетит 35 километров до побережья Франции. Во время полета человек-птица, согласно расчетам, достигнет скорости свыше 360 километров, а температура воздуха в начале полета будет около минус 80 градусов по Цельсию. Так что Баумгартнеру без специального скафандра не обойтись. К нему и будет прикреплено углеродное крыло с размахом 1,8 метра. Спланировав до высоты 300 метров, он затем спустится на парашюте.

Проект носит имя «Икар-2» в память о герое античного мифа. Баумгартнер, похоже, не боится повторить судьбу древнего Икара и других своих предшественников. Он амбициозно заявил, что хочет войти в историю как «Бог Небес».

Улыбнется ли ему удача? А может, его постигнет судьба портного, некогда прыгнувшего с Эйфелевой башни, или муллы в белых одеждах, сиганувшего с минарета на потеху султану?.. Это мы с вами еще узнаем.

Пока же скажем: единственные, кому эта затея может принести практическую пользу – это военные и представители спецслужб. Им-то, наверное, пригодится способ забросить агента на какую-то территорию незаметно даже для радарного наблюдения. Человека-птицу в ночной тьме никак не разглядеть…

Человек-ракета

Так иногда друзья называют 48-летнего швейцарца Ива Росси, пишет журнал Popular Mechanics. И это прозвище не случайно. Время от времени он поднимается в небо, на высоте около 4 км отделяется от самолета и раскрывает… крылья. Но и этого ему мало. В дополнение он включает четыре расположенных под ними реактивных двигателя и в течение 4 минут летит, как самый настоящий, только очень маленький реактивный самолет.

Для чего ему понадобился такой «цирк в небе»?

Он мечтал стать пилотом с раннего детства. В 20 лет Росси поступил в ВВС родной Швейцарии и стал военным летчиком. За годы службы он пилотировал истребители Hunter и Tiger F-5, налетал более тысячи часов на Mirage III со скоростью, вдвое превышающей скорость звука.

Закончив служить, Росси стал гражданским пилотом, летал на Douglas DC-9 и Boeing 747 компании Swissair. В настоящее время Ив – командир экипажа огромного Airbus.

А в свободное от работы время Ив Росси перепробовал немало экстремальных видов спорта. Он – опытный парашютист, скайдайвер и скайсерфер, пара – и дельтапланерист.

В 1996 году Ив попал в Книгу рекордов Гиннесса как первый скайсерфер, прыгнувший с вершины купола воздушного шара. В том же году он вновь поставил еще один экстремальный рекорд: совершил полет, держась руками за крылья двух бипланов.

Эффектное шоу Ив продемонстрировал в фильме «Сверхзвуковой серфер», пролетев верхом на масштабной модели сверхзвукового истребителя Mirage III вместо серфа.

С 1999 года Росси разрабатывал надувное крыло собственной конструкции, которое в 2002-м позволило ему преодолеть 12 км, разделяющие берега Женевского озера. Тогда же спортсмен вплотную подошел к идее установить на крыло двигатель.

Немецкая компания JetCat, которая производит турбореактивные и газотурбинные двигатели для масштабных радиоуправляемых моделей самолетов и вертолетов, предоставила ему несколько двигателей для экспериментов.

Первая попытка совершить полет состоялась в марте 2003 года. Однако надувное крыло, которое казалось удобным потому, что России мог надуть и расправить его, после того как выпрыгнет из самолета, в данном случае было непригодно. Оно недостаточно жестко, чтобы нести на себе реактивные двигатели.

К 2004 году Ив Росси завершил разработку складного жесткого крыла. Однако попытавшись продемонстрировать его на крупнейшем авиа-шоу в Аль-Аине (ОАЭ), Ив вошел в штопор и с трудом вышел из положения, приземлившись лишь на запасном парашюте, – основной купол был порван вышедшим из повиновения крылом.

Лишь 24 июня 2004 года пилот достиг успеха. Он выпрыгнул из самолета над швейцарским городком Ивердон на высоте 4000 м и, спустя пару секунд раскрыл крыло с двумя реактивными двигателями. Планируя, он снизился до 2500 м над землей и включил двигатели. На высоте 1600 м он вышел на стабильный горизонтальный полет, развил скорость около 190 км/ч и поддерживал ее в течение четырех минут. Затем Ив сложил крылья, раскрыл парашют и благополучно приземлился.

«Я испытывал абсолютную свободу в трех измерениях, – делился впечатлениями Ив. – Я был птицей!»

Реактивное крыло доказало свою работоспособность и в тот же день было запатентовано. Однако предстояло еще много работать, чтобы довести революционный летательный аппарат до совершенства.

Целый год работы ушел на создание новой модели крыла с четырьмя двигателями JetCat P200. Установка дополнительных двигателей – это серьезный риск для пилота. Температура выхлопных газов «игрушечного» Р200 достигает 690 °C, при этом сопла двигателей находятся в непосредственной близости от ног летчика. В одном из экспериментов Росси пилотировал крыло с шестью двигателями, однако эта попытка завершилась неудачей.

Новое крыло с размахом три метра и четыре реактивных двигателя обеспечили аппарату ожидаемую маневренность и стабильность. Полет в швейцарском городе Бексе в ноябре 2006 года длился 5 минут 40 секунд.

В настоящее время Ив Росси работает над постройкой новой модели летательного аппарата. Он собирается взлететь на нем прямо с земли и выполнить несколько фигур высшего пилотажа. Если это ему удастся, тогда, возможно, вскоре мы сможем говорить о возникновении нового вида личного транспорта.

Спасительный «волан»

Специалисты не однажды пытались заменить парашютный купол каким-либо иным приспособлением. Однако многочисленные приспособления оказывались малопригодными практически. Но вот, похоже, ныне кое-что начинает получаться.

Способствовали тому космические полеты. Ведь подняться в космос – лишь половина дела. Здесь, как и в горах, подняться вверх проще, чем затем благополучно спуститься. Поэтому и в СССР и в США – ведущих космических державах мира – издавна вкладывались огромные средства в разработку технологии эвакуации астронавтов и дорогостоящего научного оборудования с орбиты.

Первоначально для спуска с орбиты применялись (и применяются поныне) баллистические капсулы «Радуга», «Бор-5» и другие. Суть такого спуска заключается в следующем. Груз закладывается в прочный контейнер, который сбрасывается с борта спутника или орбитальной станции с таким расчетом, чтобы он летел вниз, подобно камню. На заключительной стадии скорость падения может быть уменьшена с помощью тормозных парашютов. Но в основном расчет на то, что капсула сама притормозит за счет трения о воздух в плотных слоях атмосферы. А также на то, что и она сама и помещенный в нее груз достаточно прочны, а потому выдержат жесткое приземление. Понятное дело, таким образом десантировать с орбиты, скажем, людей нельзя. Кроме того, к недостаткам такого способа можно отнести малую вместимость капсул и невозможность достаточно точно направлять их спуск в заданный район.

Поэтому в пилотируемых полетах спуск осуществляется с помощью спускаемых аппаратов, которые имеют аэродинамическую поверхность, позволяющую более-менее управлять спуском при входе в плотные слои атмосферы. На заключительном этапе раскрывается парашютная система. И наконец, жесткий толчок о землю смягчается с помощью твердотопливных ракетных двигателей, включающихся в самую последнюю секунду спуска.

Однако и здесь есть свои недостатки. Парашютный спуск тоже плохо управляем, требует тщательного слежения за состоянием куполов, не всегда надежен. Так, скажем, гибель космонавта-испытателя В. М. Комарова отчасти можно отнести и на счет парашютной системы.

Появление космических кораблей многоразового использования, казалось, решило проблему доставки и возвращения грузов в принципе. Но и тут все оказалось не так просто. Дело в том, что запуск одного «шаттла» – сверхдорогое удовольствие. Одно «шоу» на мысе Канаверал стоит примерно 500 млн долларов. Поэтому специалисты и поныне продолжают поиски альтернативных технологий доставки грузов с орбиты.

Одна из них – использование надувных конструкций. Ее еще в середине 80-х годов XX века предложили специалисты Научно-исследовательского центра имени Г. Н. Бабакина. За два десятилетия в результате многолетних экспериментов здесь был разработан аппарат «Демонстратор-2».

По словам одного из разработчиков этой конструкции, начальника сектора проектного отдела НИЦ Олега Власенко, в рабочем положении «Демонстратор» напоминает перевернутый зонт или большой волан для игры в бадминтон. При вхождении в плотные слои атмосферы пластиковые «спицы» этого «зонта» наполняются газообразным азотом, и он раскрывается. В сложенном виде аппарат помещается в защитную капсулу, где и хранится до момента использования.

Схема использования устройства такова. После отделения контейнера от спутника, космического корабля или орбитальной станции одноразовый тормозной двигатель должен дать импульс, чтобы направить контейнер на заданную траекторию спуска.

При входе в верхние слои атмосферы капсула с «Демонстратором» сбрасывает защитный кожух. Благодаря рациональной форме капсулы, на этом этапе происходит так называемая закрутка устройства вокруг продольной оси со скоростью 70 град/сек. Таким образом «Демонстратор» летит как пуля, не кувыркаясь, и входит в атмосферу под расчетным углом.

Затем надувное тормозное устройство отделяется от капсулы и начинает собственно процесс торможения. Первый каскад наполняется азотом и раскрывается центральная часть «волана». При вхождении в плотные слои атмосферы перед лобовым участком устройства образуется ударная волна, набегающий поток воздуха нагревается до нескольких тысяч градусов. Поэтому специалисты снабдили «колпачок» волана жестким теплозащитным покрытием и металлическим экраном.

Остальные части тормозного устройства сохраняются благодаря гибкой тепловой защите, состоящей из термостойкого покрытия и теплоизолирующего слоя. Такая защита от высокотемпературных потоков позволяет поддерживать температуру внутри самого аппарата на уровне 25–30 градусов по Цельсию. Служебная и научная аппаратура, расположенная внутри приборного контейнера и предназначенная для исследований и для управления полетом, остается неповрежденной.

Второй надувной каскад наполняется азотом при входе в более низкие слои атмосферы, на высоте 15 километров. «Волна» как бы распушает свои «перья». Благодаря этому скорость падения к моменту посадки снижается до 15–17 м/с.

Так, побеждая атмосферные силы и используя энергию сопротивления атмосферы, «космический парашют» приземляется в обозначенном месте. Для обнаружения аппарата после его приземления используются радиомаяки комплекса бортового оборудования, сигнал которых можно поймать с помощью радиокомплексов, установленных на борту поисковых вертолетов.

Одним из достоинств новой технологии является ее относительная дешевизна. Для доставки надувного тормозного устройства на космическую станцию планируется использовать транспортно-грузовой корабль «Прогресс». Он придаст надувному тормозному устройству импульс торможения, затем в определенный момент отстыкуется и будет «затоплен». Производство «Прогрессов» является серийным процессом, что снижает издержки. Кроме того, у «Демонстратора» лучшее соотношение веса полезной нагрузки и веса аппарата. Сегодня на используемых средствах оно составляет 1: 4, на «Демонстраторе» его можно довести до 1: 1. Размеры надувного тормозного устройства подходят для размещения его на борту космических станций и транспортных кораблей. Диаметр устройства в сложенном виде равен 1 м.

По словам Олега Власенко, новая технология может иметь достаточно широкое применение. Аппарат с надувным тормозным устройством помимо того, что сможет решить проблему доставки грузов на землю с Международной космической станции, может использоваться и для исследования других планет. Кстати, эта идея фигурировала и в рамках программы «Марс-96», где надувному тормозному устройству отводилась задача доставки научной аппаратуры на поверхность Красной планеты. К тому же решится вопрос с возвращением на землю выработавших свой технический ресурс орбитальных спутников, что даст возможность использовать их вторично после переоборудования или капитального ремонта.
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 17 >>
На страницу:
11 из 17