Цифровая фотография. Трюки и эффекты Юрий Анатольевич Гурский Без цифрового фотоаппарата довольно трудно представить современную жизнь. Практически в каждой семье уже есть это «чудо техники». В данной книге собрано множество по-настоящему полезных практических примеров использования цифровой фототехники, каждый из которых основан на оригинальной идее или задаче. Юрий Анатольевич Гурский Цифровая фотография. Трюки и эффекты Введение Если вы думаете, что книга, которую вы держите в руках, – это обычный самоучитель по цифровой фотографии, то ошибаетесь. Конечно же, в ней есть главы, в которых рассказано об основах цифрового фото. Эту информацию вы найдете в любой другой книге по схожей теме, но согласитесь, без нее книга была бы неполной. Зато данная книга, в отличие от обычных пособий для начинающих фотографов, содержит описание многих уникальных приемов, которые вам наверняка захочется опробовать самим. Эта книга скорее практическая, нежели теоретическая, поэтому неудивительно, если она займет почетное место в вашем дорожном рюкзаке рядом с фотоаппаратом. Первая часть книги посвящена искусству цифровой фотографии и секретам съемки. Изучив технику съемки, вы научитесь правильно использовать освещение, выбирать композицию, корректно использовать вспышку. Но главное – вы узнаете о типичных ошибках, которые часто делают начинающие фотографы, и поэтому сможете быть уверены в том, что не наступите на чужие грабли. Далее вы познакомитесь с секретами съемки насекомых, пейзажей и людей в разных ситуациях. Книга посвятит вас в число избранных, которым известны самые интересные приемы съемки. Искусство фотографии – это отчасти искусство обмана. Когда вы смотрите на аппетитное яблоко, это вовсе не означает, что оно действительно выглядело так красиво, когда его снимал фотограф. Вторая часть книги посвящена самому популярному средству для обработки цифровых фотографий на компьютере – программе Adobe Photoshop. Из нее вы узнаете об основных инструментах, которые понадобятся вам при обработке цифровых фотографий: кистях, карандашах, градиентах, штампах и др. Вы научитесь управлять цветом и яркостью ваших фотографий, работать со слоями, изменять размеры изображений и обрезать их. Наконец, третья часть книги научит вас производить со своими снимками невероятные действия. Вы освоите множество профессий, ведь, редактируя фотографии, вы будете и парикмахером, и стоматологом, и диетологом, и стилистом. Несколько приемов – и герои ваших фотографий станут моложе, стройнее, обретут новые зубы и изменят прическу. Но это только начало, ведь дальше вы сможете потренироваться в освоении такого нелегкого дела, как смена погодных условий. Добавление на фотографии снега, дождя и тумана, изменение сезона и времени суток – вам все будет под силу. От издательства Ваши замечания, предложения и вопросы отправляйте по адресу электронной почты gromakovski@minsk.piter.com (mailto:gromakovski@minsk.piter.com) (издательство «Питер», компьютерная редакция). Мы будем рады узнать ваше мнение! На сайте издательства http://www.piter.com (http://www.piter.com/) вы найдете подробную информацию о наших книгах. Часть I Съемка цифровым фотоаппаратом Глава 1. Вы взяли в руки цифровой фотоаппарат… Глава 2. Камера и компьютер Глава 3. Устройство цифровой камеры, цвет и «цифра» Глава 4. Азбука фотографии Глава 5. Техника съемки Глава 6. Сюжеты и советы Глава 7. Трюки для мастера фотодела Глава 1 Вы взяли в руки цифровой фотоаппарат… 1.1. Начало 1.2. Как во всем этом разобраться Итак, вы взяли в руки цифровой фотоаппарат. Вставили карту памяти и батарейки. Включили. На жидкокристаллическом мониторе появилось изображение, которое «видит» видоискатель вашей камеры или ее объектив. Что дальше? Снимайте! Снимайте – сначала все, что придет в голову. Результаты съемки вы сможете сразу же увидеть на мониторе камеры, а чтобы лучше их оценить, фотоаппарат придется подключить к компьютеру. Лучше всего, если на вашем компьютере будут установлены программы для просмотра цифровых изображений (одну из таких программ вы найдете на компакт-диске, входящем в комплект поставки цифровой камеры). Но в крайнем случае можно обойтись встроенными в Windows средствами просмотра цифровой графики. 1.1. Начало Если все так просто, то к чему же на цифровом фотоаппарате столько кнопок, рычажков и переключателей (рис. 1.1)? Чтобы сделать ваши снимки лучше! Рис. 1.1. Управляющие элементы камеры Canon EOS 450D Меню и управляющие элементы вашей камеры скрывают множество функций, в которых мы детально разберемся чуть позже. А пока достаточно знать, что, изучив инструкцию камеры и пройдясь по ее меню, вы обнаружите возможности, о которых и не подозревали. Будущее покажет, найдете вы им применение или нет. Но чем больше вы знаете о своей камере, тем точнее сможете управлять ею и тем меньше допустите ошибок. Новички могут поначалу путаться во всех этих особенностях и настройках, но помните – вы всегда можете использовать автоматические режимы. В автоматическом режиме камера самостоятельно выберет наилучшие параметры съемки. В обычных условиях съемки автоматика позволяет получить очень реалистичные кадры довольно высокого качества. Взяв в руки новую модель камеры, фотограф прежде всего разберется в том, как ею управлять. А это бывает непросто, если учесть степень миниатюризации фотоаппаратов. Ведь чем меньше камера, тем меньше и элементы управления. В инструкции к вашей камере, разумеется, есть схема, разъясняющая, для чего служат все эти кнопки, лимбы (круговые шкалы) и переключатели. Единого принципа их расположения и обозначений не существует. Вот только кнопка спуска затвора всегда и во всех моделях находится в правой верхней части корпуса. Кнопки бывают снабжены надписями или символами, для которых тоже не существует единого стандарта. Следует быть готовым к тому, что обозначения на вашей камере могут не совпадать с теми, которые использует большинство производителей. А ведь еще имеются жидкокристаллические дисплеи, на которые выводится информация о дате и времени, об уровне заряда батарей и т. д. С помощью экранного меню также можно управлять некоторыми функциями камеры и режимами съемки. Режим съемки – это набор команд, которые предписывают фотоаппарату действовать определенным образом. Например, установив режим съемки движения, фотограф тем самым приказывает камере вести съемку с самыми короткими выдержками. Если фотограф, включив камеру, не отдал ей никаких приказов, то камера будет использовать режим, установленный по умолчанию. Секрет Установки по умолчанию – это те установки, которые назначены производителем камеры и к которым всякий раз возвращается камера в случае, если вы не выбрали другой режим. Примером установки по умолчанию может служить режим автоматической вспышки, которая будет включаться всякий раз, как только камера сочтет объект съемки недостаточно освещенным. Отключение этой установки означает перевод вспышки в какой-нибудь иной режим. 1.2. Как во всем этом разобраться Управлять цифровой камерой гораздо проще, чем видеомагнитофоном или, скажем, автомобилем. Хотя для того, чтобы лучше управлять фотоаппаратом и чтобы знать, что он может, а что нет, его, как и автомобиль, нужно «обкатать» и «приручить». Руки и поза фотографа Новичку порой кажется, что руки только мешают фотографу: рукой можно случайно закрыть вспышку, пальцы то и дело попадают в кадр. А все дело в том, чтобы, внимательно рассмотрев камеру и повертев ее в руках, выбрать наилучшее положение рук и приучить себя брать камеру определенным образом. Кстати Корпуса большинства цифровых камер имеют специальные ясные на ощупь ограничители, за которые не должны выступать пальцы снимающего. Будьте внимательны – случайно задев пальцем объектив или видоискатель, вы навлекаете на себя исполнение непростой процедуры очистки оптики. Выработайте привычку во время съемки следить за положением ремешка камеры и за своими руками. Как ни странно, именно они часто становятся причиной появления на снимках пятен и объектов непонятного происхождения. Вы справились с непослушными руками? Но это еще не все. Качество снимка также зависит от того, насколько вы сумели обеспечить неподвижность камеры во время съемки. Порой хорошие снимки оказываются испорченными из-за несоблюдения элементарных требований. Четкость сделанной вами фотографии определяется тем, насколько неподвижен фотоаппарат в момент срабатывания затвора. Чтобы камера во время съемки оставалась более или менее неподвижной, опытные фотографы используют любую опору (стену, камень, ствол дерева) либо штатив. Компактные камеры довольно легкие, и их можно держать одной левой. Правая рука при этом поддерживает корпус фотоаппарата, а указательный палец нажимает кнопку спуска затвора. Ноги слегка расставлены, а локти упираются в грудь – такая поза, может, отличается от расслабленных манер фотомодели, но камере (и фотографу) она придает устойчивость. Дальше все просто: выдохнуть, затаить дыхание и нажать кнопку спуска. Спусковую кнопку следует нажимать очень плавно, без рывков, помня, что даже крохотное смещение фотоаппарата в момент съемки означает смазывание изображения. Все это можно изложить и короче, сформулировав два условия правильной позы фотографа. Правильная поза обеспечивает фотографу удобство, а камере – неподвижность. Спортсмены постоянной тренировкой достигают автоматизма нужных приемов и движений. Фотографу тоже следует тренироваться, как брать камеру в руки, занимать удобную и устойчивую позу и плавно, без спешки нажимать кнопку затвора. Первое знакомство с меню цифровой камеры Итак, камера включена, а ее операционная система загружена. Теперь можно настроить фотоаппарат. Элементов управления у него немного, и большинство функций и настроек доступны только через меню. Изменить настройки вы можете, выведя меню (текстовое или графическое) на жидкокристаллический экран. Меню практически всех моделей цифровых камер приблизительно однотипные и достаточно понятные, поэтому нет смысла подробно разбирать их в этой книге, так как даже самый толстый том вряд ли сможет подробно описать весь спектр того, что предлагает рынок. Как узнать, какие настройки установлены в только что купленной камере? Обычно при первом включении по умолчанию устанавливаются заводские настройки автоматического режима. Почему меню моей камеры не такое, как описано в этой книге? Меню могут различаться только дополнительными параметрами. В дорогих моделях их больше, в дешевых – меньше. Можно ли что-нибудь испортить, если начать копаться в меню? Испортить вы ничего не сможете. А чтобы вернуться к настройкам автоматического режима, достаточно выбрать пункт меню, который называется Default Settings (Настройки по умолчанию). Здесь столько настроек! Как в них разобраться? Все настройки, которые можно изменить с помощью меню, делятся на сервисные и настройки параметров. С помощью сервисного меню (рис. 1.2) можно изменить яркость жидкокристаллического монитора, установить автоматический просмотр только что снятого кадра, изменить язык меню, назначить время, по истечении которого камера перейдет в энергосберегающий режим или просто выключится. Но главное – вы по своему разумению сможете изменить параметры съемки. Рис. 1.2. Сервисное меню одной цифровой камеры Вот несколько общих для всех камер пунктов меню. • Image Size (Размер изображения). Задается в пикселах. • Image Quality (Качество изображения). Здесь обычно можно выбрать Fine (Отличный), Standard (Стандартный) или Economy (Экономичный) размер. • White Balance (Баланс белого цвета). Установленный по умолчанию Auto (Автоматический) можно изменить на Custom (Пользовательский) или Preset (Предустановленный). • Drive Mode (Режим съемки). Есть варианты Single (Одиночный кадр), Self-timer (Автоспуск), Progressive (Серия), Continuous (Непрерывный) и Bracketing (Автовилка, или брекетинг). • Режимы вспышки, настройки цвета, чувствительности, резкости, контраста и т. д. Пиксельный размер изображения Цифровое изображение состоит из точек-пикселов. В настройках цифровой камеры обычно предусмотрен выбор пиксельных размеров снимка: скажем, 1600 х 1200, 2272 х 1704, 2816 х 2112, 3648 х 2736 и т. д. Эти цифры означают размер снимка (в пикселах) по горизонтали и по вертикали и называются разрешением камеры. Чем больше пикселов содержит изображение, тем лучше качество фотографии. Цифровые камеры позволяют изменять пиксельный размер сохраняемого изображения. Кстати Ваша камера по умолчанию настроена на максимальное разрешение, которое может обеспечить ее матрица. Если увеличить разрешение (то есть количество пикселов в изображении), то на качество изображения это не повлияет. Но увеличивать пиксельный размер изображения, выбрав максимальное разрешение, не всегда полезно. Камера сохраняет снимок в виде файла, а чем больше пикселов содержит изображение, тем больше будет размер файла и тем меньше кадров вы сможете записать в память камеры. К примеру, фотография размером 1600 х 1200 пикселов «весит» около 500 Кбайт, а снимок 3648 х 2736 может занять более 3000 Кбайт. К тому же при редактировании фотографий большие файлы «съедают» больше оперативной памяти, а это сделает вашу работу на компьютере существенно медленнее. Кроме того, большие файлы не годятся ни для размещения на веб-странице, ни для пересылки по электронной почте. Поэтому в общем случае при настройке размера изображения лучше придерживаться золотой середины. Если вы все же хотите изменить размер будущего снимка, то лучше исходить из того, для чего он делается. К примеру, нет смысла назначать максимальный размер для снимка, предназначенного для пересылки по электронной почте или размещения в Интернете. А вот пиксельные размеры снимка, предназначенного для печати, пусть будут побольше. При просмотре изображений на дисплее камеры обычно указывается их пиксельный размер. Исходя из установленного вами размера снимка, многие модели камер оценивают и выводят на монитор количество фотографий, которые могут быть сохранены на карту памяти при текущих установках. Качество изображения Качество изображения управляет степенью сжатия, но не оказывает влияния на количество пикселов. Чем выше нужное вам качество изображения, тем меньше должна быть степень сжатия файла. Под качеством изображения (Image Quality) одни производители понимают выбор одного из двух форматов (JPEG или TIFF), а другие – степень сжатия изображения. Если речь идет о степени сжатия файла изображения и вы решили записывать изображения с отличным (Fine) качеством, то будьте готовы к тому, что их объем увеличится почти вдвое по сравнению со стандартным (Standard). Ну а если вы столкнулись с необходимостью экономить ресурсы карты памяти, имеет смысл выбрать экономичный (Economy) размер, который приблизительно вдвое меньше стандартного (Standard). Как видно из табл. 1.1, размер файла изображения напрямую зависит от его качества. Таблица 1.1. Примерный объем файлов JPEG, Кбайт Если же речь идет о выборе между форматами JPEG и TIFF, то имейте в виду, что файлы TIFF в несжатом виде занимают в памяти гораздо больше места, чем JPEG-файлы. Зато изображение будет сохранено без потерь. Баланс белого цвета Настройки баланса белого (White Balance) сообщают камере, какое сочетание красного, синего и зеленого цветов она должна принимать за белый. От этих настроек зависит точность цветопередачи изображения, то есть способность камеры превращать различные типы освещения в нейтральный свет. В большинстве камер баланс белого цвета задается либо автоматически, либо вручную, либо по предустановленным значениям. В продвинутых камерах есть несколько предустановленных режимов баланса белого, что очень удобно: фотограф может выбрать любой режим, предусмотренный производителем. Обычно доступны режимы для дневного света (Daylight), для съемки в свете ламп накаливания (Incandescent), при флуоресцентном освещении (Fluorescent), для съемки в пасмурную погоду (Cloudy) и с использованием встроенной вспышки (Flash) (рис. 1.3). Рис. 1.3. Выбор предустановленного баланса белого в меню камеры «Это чересчур сложно! Я не собираюсь связываться с этими параметрами», – можете подумать вы. Ничего сложного здесь нет. Между прочим, для съемки при дневном освещении до самого заката можно положиться на автоматический выбор режима, а рано утром или на закате лучше установить баланс белого вручную или воспользоваться предустановленными режимами. Совет Как установить баланс белого вручную? Выберите в меню эту настройку (White Balance Preset), а затем наведите объектив на лист белой бумаги (или на любую поверхность белого цвета) так, чтобы весь кадр был залит чистым белым цветом, без теней и отблесков от других поверхностей. Цветовой баланс устанавливается нажатием кнопки спуска. Поздравляю вас! Теперь вы сможете оперативно настроить баланс белого и вас больше не смутят быстро меняющиеся условия освещения Корректируя баланс белого, можно исправить огрехи освещения и сделать снимок лучше. На рис. 1.4 приведен пример съемки в помещении при обычном бытовом освещении. Первый снимок сделан в режиме автоматического баланса белого, а для второго фотограф установил баланс белого вручную. а б Рис. 1.4. Пример съемки с автоматическим балансом белого (а) и с балансом белого, установленным пользователем (б) При съемке с использованием встроенной вспышки баланс белого, как правило, подстраивается под цветовую температуру вспышки. Гистограмма Во многих моделях камер можно вывести на экран гистограмму (Histogram) снимка – столбчатую диаграмму, которая измеряет распределение его светлых и темных тонов. В левой части шкалы отображаются тени, а в правой – свет. По горизонтали этой диаграммы откладываются градации серого от 0 (черный цвет) до 255 (белый), а по вертикали – количество точек соответствующей градации в изображении. Просмотр гистограммы только что сделанного изображения очень удобен, так как сразу укажет на существующую проблему. Кстати Многие модели камер позволяют вывести гистограмму изображения, которое видит объектив, когда снимок еще не сделан (рис. 1. 5). Так можно предварительно оценить будущий кадр. Хотя предварительная гистограмма зачастую не совпадает с той, которая соответствует уже записанному изображению. Рис. 1.5. Гистограмма изображения на дисплее камеры Как оценить кадр по его гистограмме? В сложных условиях съемки даже самая совершенная камера может промахнуться с параметрами экспозиции, причем по изображению на дисплее понять это будет нельзя и ошибку вы заметите лишь на мониторе компьютера. Гистограмма изображения подскажет вам, какую поправку внести для параметров экспозиции. Уточнив экспозицию, снимок можно будет тут же повторить (конечно, лишь в том случае, если объект съемки еще никуда не умчался). Высота кривой в любой точке шкалы показывает, сколько пикселов имеет именно эту яркость. Идеальная гистограмма имеет «горб» в центре и заканчивается, спускаясь к самым краям шкалы. При съемке сложных объектов порой теряются детали света и тени. В этом случае гистограмма не доходит до одного из краев шкалы. Для примера посмотрим на гистограмму какого-нибудь снимка (рис. 1.6). Легко заметить, что значения левого края резко идут вверх, то есть черный цвет в изображении имеется. Белого цвета совсем нет, а «горбы» на снимке говорят о том, что фотография имеет цветовые контрасты. Рис. 1.6. Анализ изображения по его гистограмме Вот в чем вопрос Всегда ли нужно шлифовать снимок для достижения идеальной гистограммы? Вовсе нет Ведь гистограмма – не цель, а средство. Гистограмма фотографии на рис. 1.6 не слишком хороша, но ведь настроение, создаваемое изображением, не становится менее лиричным. Ну а количество тональных переходов – совсем не главное. Ведь мы занимаемся фотографией вовсе не для того, чтобы получить похвалу полиграфистов или теоретиков фотодела. Сервисные меню и средства работы с изображением В меню вы можете обнаружить такие настройки, с которыми удобнее работать при обработке снимков в программе-редакторе. В процессе съемки можно регулировать цветовую насыщенность (Saturation) и резкость (Sharpness). Можно задать три степени изменения резкости: низкую (Low), обычную (Normal) и высокую (Hard). Повышением резкости увлекаться не стоит, так как она усиливает цифровой шум и ведет к появлению артефактов. Можно настроить и светочувствительность (Sensitivity) камеры (не забывая при этом, что высокая чувствительность усиливает цифровой шум). Новички могут поначалу путаться во всех этих особенностях и настройках, но помните – вы всегда можете использовать автоматические режимы. В обычных условиях съемки автоматика позволяет получить очень реалистичные кадры достаточно высокого качества. Экспериментируйте с настройками, тренируйтесь и помните, что даже самый замечательный профессионал когда-то был начинающим и совершал множество ошибок. Глава 2 Камера и компьютер 2.1. Способы передачи изображений на компьютер 2.2. Передача изображений с камеры на компьютер 2.3. Программы для просмотра и редактирования изображений 2.1. Способы передачи изображений на компьютер Снимок сделан и записан в память камеры. Теперь нужно просмотреть его на экране компьютерного монитора, переписать на жесткий диск и, возможно, обработать. Да и свободного места на карте памяти осталось совсем немного, пора ее разгрузить, отформатировать и приготовить к дальнейшему использованию. Кстати Данные временно можно перенести на носители вроде модулей внешней flash-памяти, которые в последнее время чрезвычайно популярны. Не удивляйтесь, увидев брелок, ручку или даже швейцарский нож, снабженные разъемами USB или FireWire. И все же рано или поздно настает время, когда нужно перенести данные с цифровой камеры или с внешнего носителя на компьютер. Следовательно, при покупке камеры нужно убедиться, что она совместима с вашим компьютером или ноутбуком. Для этого следует определить, есть ли у камеры и у компьютера совместимые порты. Переписать изображения с фотоаппарата на компьютер можно с помощью кабеля. А можно перебросить их через переходник на подключенный к компьютеру съемный накопитель или (напрямую) на модные штуковины вроде брелока или ручки, снабженные встроенной flash-памятью. USB – стандартный интерфейс В большинстве камер предусмотрена возможность загрузки изображений в компьютер посредством кабеля. Сегодня большинство камер разрабатывается так, чтобы передавать снимки по шине USB (Universal Serial Bus – универсальная последовательная шина), и комплектуется USB-кабелем (рис. 2.1). Рис. 2.1. USB-кабель Ставший для цифровых камер фактически стандартом, USB-кабель позволяет относительно быстро передавать большие объемы данных и, кроме того, предоставляет аппарату питание от компьютера. Кстати С помощью USB (рис. 2. 2) к компьютеру можно подключать и другое оборудование: принтер, веб-камеру, плеер и т. д. Некоторые умудряются подключать даже кофейник и тапочки с подогревом! Рис. 2.2. Подключение USB-кабеля к компьютеру Другие способы передачи Если изображения в камере хранятся на карте памяти (CompactFlash, Secure Digital, Memory Stick и др.), то эту карту можно вставить в предусмотренный слот ноутбука и скачивать снимки непосредственно с нее. Для настольного же компьютера придется приобрести картовод (Card Reader) – устройство для чтения карт памяти. Некоторые камеры имеют видеовыход. Это позволяет просматривать снимки на экране телевизора и записывать их на видеокассету, что весьма удобно, если вы хотите показать фотографии друзьям, у которых нет компьютера. Считывающие устройства Большинство камер не комплектуется считывающим устройством, и вам, возможно, придется его приобрести. Рынок предлагает множество таких устройств (рис. 2.3). Среди них как способные работать практически со всеми видами памяти, так и специализированные, рассчитанные только на один формат. Рис. 2.3. Устройства для считывания карт памяти Такое устройство удобно постоянно держать в разъеме, чтобы не беспокоиться, что в нужный момент под рукой не окажется интерфейсного кабеля. Адаптеры упрощают использование карт памяти, так как при работе с ними не требуется дополнительных кабелей. Считывающие устройства удобны для того, чтобы перекачивать изображения с карты памяти на компьютер, к тому же при этом экономится энергия аккумуляторов фотоаппарата. Еще раз отметим, что для каждого типа карт существует свой адаптер, но в последнее время на рынке появились считывающие устройства для более чем двадцати видов карт (рис. 2.4). Рис. 2.4. Эта модель Card Reader может работать с 29 типами карт Разнообразие устройств для чтения карт не позволяет привести какую-либо одну схему загрузки файлов на жесткий диск. Но единый алгоритм этой операции все же существует. Итак, извлеченную из камеры карту памяти вы вставили в адаптер. Драйвер адаптера вы, конечно, установили заранее с приложенного производителем диска. Но в большинстве случаев вам не придется устанавливать никаких драйверов, поскольку операционные системы Windows XP и более новые устанавливают собственные драйверы для адаптеров, как только вы подключаете их к компьютеру. Обычно при вставке в адаптер карты памяти на экране монитора появляется диалоговое окно Автозапуск, в котором присутствует команда Импортировать фотографии и видео. Данная команда появляется, только если на карте памяти содержатся графические или видеофайлы. Вы также можете открыть содержимое карты памяти в Проводнике Windows, как и любого локального диска на вашем компьютере. Карта памяти в Проводнике представлена как отдельный диск, имеющий свою букву. Иногда к букве добавляется описание (метка тома), например Canon_DC. Раскрыв содержимое карты памяти, вы можете переписать фотографии на жесткий диск стандартными методами Windows (или воспользоваться файловым менеджером типа Total Commander). Отключив (если это необходимо) адаптер, обязательно проверьте, появились ли изображения в той папке, куда вы задумали их скопировать. Важно! Делайте резервные копии всех файлов, которые вы перенесли с камеры на компьютер, на компакт-диске или DVD. После того как данные сохранены на жестком диске и сделана их резервная копия, карту памяти можно отформатировать и использовать снова. Форматирование можно производить средствами Windows, но лучше использовать для этого специальную команду меню цифровой камеры. 2.2. Передача изображений с камеры на компьютер Перенос фотографий на жесткий диск с помощью Проводника Windows Процедура переноса снимков на компьютер напрямую с цифровой камеры, с помощью устройства считывания карт или внешнего носителя очень проста. 1. В выбранном вами каталоге компьютера создайте новую папку. Нажав клавишу F2, переименуйте ее на свой вкус. 2. Подключите камеру к компьютеру посредством кабеля или специального переходника и включите ее. Камеру можно включить и заранее, так как интерфейсы USB и FireWire допускают соединение работающих устройств. Если вы используете устройство для чтения карт, то извлеките из камеры карту памяти и вставьте ее в считывающее устройство. 3. Открыв окно Компьютер, вы увидите, что в нем появился дополнительный диск (рис. 2.5). Откройте его. Если на этом съемном диске есть папка, то откройте и ее. На экране появятся значки, каждый из которых – это сделанный вами снимок. Рис. 2.5. Компьютер распознает камеру как съемный диск 4. Выделите фотографию, выбранную вами для переноса на жесткий диск компьютера. Если вы хотите скопировать все содержимое карты памяти, то в меню Правка выберите пункт Выделить все (можно также использовать сочетание клавиш CtrL+A). Тогда все содержащиеся в папке снимки окажутся выделенными. 5. Теперь в меню Правка выберите команду Копировать. При этом информация, записанная на карте памяти вашей цифровой камеры, переносится в буфер. Эта же команда выполняется нажатием сочетания CtrL+C. Внимание! В операционной системе Windows 7 меню в окне Проводника (и в ряде программ) скрыто и появляется при нажатии клавиши Alt. 6. Перейдите в созданную вами папку жесткого диска. В меню Правка выберите команду Вставить (CtrL+V). На экране появится индикатор процесса копирования (рис. 2.6). Через некоторое время снимки перепишутся из буфера в данную папку. Рис. 2.6. Процесс копирования снимков с камеры в выбранную папку 7. Отсоедините и выключите камеру. В некоторых случаях может понадобиться безопасное извлечение устройства. Чтобы отключить камеру (или карту памяти), используя метод безопасного извлечения, следует щелкнуть правой кнопкой мыши на значке Безопасное извлечение устройств и дисков, расположенном в области уведомлений, и в появившемся контекстном меню выбрать команду Извлечь для нужного диска (рис. 2.7). Рис. 2.7. Безопасное отключение USB-устройства Передача изображений на компьютер с помощью программ Копировать изображения с камеры с помощью Проводника Windows не всегда удобно. Гораздо лучше делать это, используя приложение для работы с цифровыми изображениями – программу просмотра или графический редактор. Такие программы умеют соединяться и работать с фотоаппаратами и сканерами напрямую посредством TWAIN-драйвера. Кстати TWAIN – это не аббревиатура, а просто название интерфейса, посредством которого камера (или сканер) «общается» с компьютером. Иногда TWAIN в шутку расшифровывают как Technology Without An Interesting Name (Технология, не получившая умного названия). TWAIN-драйверы производитель встраивает в программное обеспечение для своего оборудования, и вы можете даже не подозревать о присутствии TWAIN-драйвера на своем компьютере. Как правило, на компакт-диске, которым производитель комплектует цифровую камеру, кроме драйвера, содержатся общедоступные программы для просмотра и обработки снимков, адаптированные для работы с конкретной линейкой камер. Обычно это программы просмотра, несложные графические редакторы и приложения для создания цифровых фотоальбомов. Все программы для работы с графикой логичные, гибкие и устроены таким образом, что подходят как профессионалу, так и рядовому пользователю. Несмотря на разнообразие этих утилит, все они действуют примерно одинаково, а элементарные приемы работы с изображениями у них практически одни и те же. На примере программы просмотра изображений ACDSee Pro рассмотрим простейшее действие – копирование информации с камеры на компьютер. Эту операцию можно выполнять с помощью любой программы для работы с графикой. 1. Откройте программу ACDSee Pro. На экране появится окно, в левой части которого находится дерево каталогов вашего компьютера, а камера представлена как съемный диск (рис. 2.8). Рис. 2.8. Вашу камеру программа ACDSee воспринимает как съемный диск 2. Щелкните на строке съемного диска. В правой части окна отобразится содержимое съемного диска, то есть сделанные вами снимки или папки, содержащие снимки. В последнем случае требуется раскрыть нужную папку. 3. Изображения с цифровой камеры можно переписать как в новую папку жесткого диска, так и в уже имеющуюся. Для этого выделите щелчком выбранную вами фотографию. Если вы хотите перенести на жесткий диск все содержимое карты памяти, то в меню Правка выберите пункт Выделить все. Для выполнения этой операции можно также использовать сочетание клавиш CtrL+A. 4. Выполните команду Правка ? Копировать или нажмите CtrL+C. При этом информация, записанная на карте памяти вашей цифровой камеры, переносится в буфер. 5. В дереве каталогов выберите папку, в которую вы хотите переместить изображения, и откройте ее щелчком кнопкой мыши. Содержимое папки отобразится в правой части окна. Выполните команду Правка ? Вставить (Ctrl+V). Появится окно, отображающее процесс копирования (см. рис. 2.6), который может занять некоторое время. В результате все снимки будут переписаны из буфера в выбранную вами папку. 6. Отсоедините и выключите камеру. Если требуется, воспользуйтесь методом безопасного извлечения устройства (см. рис. 2.7). Удостоверьтесь, что изображения переписаны на жесткий диск. Если все в порядке, то при открытии выбранной вами папки в основной части окна появятся маленькие картинки. Решите, хотите ли вы удалить изображения из памяти камеры. Но это можно сделать и потом, а теперь время просмотреть скопированные снимки, отредактировать и стереть ненужные. 2.3. Программы для просмотра и редактирования изображений Программы для просмотра и редактирования изображений – важная составляющая в работе с камерой и цифровым фотоархивом. С их помощью вы сможете легко навести порядок на жестком диске, отбросить ненужное и отложить для дальнейшей обработки самые удачные фотографии. Основная проблема, с которой сталкиваются владельцы цифровых камер, – хранение, обработка и просмотр фотографий. Лучшие из них хочется рассортировать по цифровым фотоальбомам и прокомментировать, переслать по электронной почте знакомым и родным, опубликовать в Интернете. Снимки накапливаются очень быстро: сначала десятки, а потом сотни изображений, которые хочется сберечь. Все они нуждаются в упорядоченном хранении. Эти проблемы, а также некоторые другие будут решены, как только вы установите на свой компьютер программу просмотра цифровых изображений. Что же умеют программы просмотра и несложные графические редакторы? Очень и очень многое! • В графическом редакторе можно увеличить или уменьшить снимок. Кстати, если пиксельные размеры изображения уменьшить на 10 %, то в большинстве случаев оно ничего не потеряет, а вот места будет занимать значительно меньше. • Обрезав изображение и тем самым изменив его пропорции или сместив центр, можно исправить композицию кадра. • Не беда, если держащая камеру рука дрогнула и горизонт перекосился, – снимок можно повернуть в любом направлении на желаемое количество градусов. • Снимок получился нечетким? Можно увеличить контрастность. А если изображение из-за нехватки света слишком темное, можно добавить ему яркости. Можно даже «поправить» экспозицию! • Цвета тоже можно редактировать, увеличивая или уменьшая насыщенность каждого из них. • Набив руку, можно попробовать вырезать части фотографий и вставлять их в другие изображения. • Графические эффекты позволяют «состарить» фотографию, придать ей вид живописного полотна, добавить текстуру. Снимок можно превратить в гравюру, «осветить» солнцем или луной, поэкспериментировать с насыщенностью цвета. С помощью фильтров можно размыть изображение, придав ему динамику, искривить и добавить отражение – все, что продиктуют вам фантазия и вкус. ACDSee Программа ACDSee позволяет просматривать изображения прямо с камеры, копировать их на жесткий диск по одному или все разом, создавать и стирать папки для изображений в любом каталоге. ACDSee дает возможность обзора всего дерева каталогов и файлов, что очень удобно. Как видно на рис. 2.9, главное окно ACDSee Pro состоит из нескольких конфигурируемых панелей. Рис. 2.9. Главное окно программы ACDSee Pro • Папки, где можно выбрать диск и каталог с файлами. В данной области доступны и другие варианты показа фотографий, например Календарь ? Просмотр по событиям. При этом фотографии автоматически сортируются по дате создания файлов, и для каждой даты можно добавить описание и эскиз одной или нескольких фотографий. • Окно с миниатюрными копиями (thumbnails) всех изображений, находящихся в просматриваемой папке. • Область Просмотр, в которой изображение увеличено по сравнению с миниатюрой, но не дотягивает до полного размера. • Панель Упорядочивание, предназначенная для сортировки изображений по категориям, по рейтингу или в автоматическом режиме. ACDSee умеет сортировать файлы по типу, дате и названиям, а возможность поиска по базе метаданных делает программу чемпионом удобства организации хранения файлов, работы с каталогами и большим количеством изображений. Здесь можно создавать закладки (Избранное), что очень удобно, если ваша огромная коллекция картинок располагается в разных директориях. Разместив папки с изображениями на панели Избранное, вы получите быстрый доступ к этим файлам. Дважды щелкнув на выбранном снимке, вы получите возможность просмотреть его в подробностях (рис. 2.10). С помощью кнопок Увеличить и Уменьшить изображение можно увеличить или уменьшить. «Листать» содержимое папки можно, используя кнопки Следующий и Предыдущий либо вращая колесико мыши. Чтобы вернуться в папку или к другим каталогам, следует нажать кнопку Обозреватель или клавишу Enter. Рис. 2.10. Просмотр изображения в ACDSee Pro Редактор ACDSee позволяет изменять форму снимка, ориентацию и размер, а настраивая яркость и контраст, можно немного улучшить его качество. Команда меню Изменить ? Режим редактирования или кнопка Редактировать отсылает вас в раздел программы, позволяющий редактировать фотографии с помощью простейших операций. Кроме уже знакомых кнопок Увеличить и Уменьшить, здесь имеются команды Поворот и отражение, Изменение размера и др. При нажатии определенной кнопки в правой части окна программы появляется панель с параметрами выбранного режима коррекции. Например, при нажатии кнопки Поворот и отражение появится панель (рис. 2.11), на которой нужно выбрать направление и угол поворота, а затем нажать кнопку Готово. Рис. 2.11. В редакторе ACDSee можно задать угол поворота снимка Для изменения размеров изображения выбираем команду Изменение размера и на появившейся панели (рис. 2.12) указываем, сколько пикселов снимок должен иметь по ширине или высоте. Другой размер снимка изменится пропорционально автоматически. Также можно выбрать другие единицы измерения для изменения размера печатного оттиска снимка (дюймы, сантиметры или миллиметры). Рис. 2.12. Изменение размеров изображения в редакторе ACDSee Кстати Перед тем как изменять фотографию, нужно создать ее копию. Большой набор фильтров позволяет сделать с фотографией все, на что способна ваша фантазия. Снимок можно превратить в гравюру или масляную живопись, «состарить», «осветить» солнцем, создать эффект ветра или взгляда сквозь мокрое стекло. Сильная сторона ACDSee – многообразие режимов и дополнительных функций, которые упрощают и облегчают просмотр большого количества изображений и работу с ними. Adobe Bridge В состав любого пакета Creative Suite от Adobe (на текущий момент выпущена его четвертая версия) входит программа Bridge, представляющая собой проводник и средство для просмотра различных мультимедийных файлов, в том числе изображений. Программа имеет тесную интеграцию с другими приложениями от компании Adobe, поэтому в Bridge можно просматривать не только графические файлы, но и файлы проектов After Effects (с поддержкой воспроизведения анимации), документы Illustrator, InDesign и т. д. Окно Adobe Bridge очень похоже на окно ранее описанной программы ACDSee (рис. 2.13). Рис. 2.13. Окно программы Adobe Bridge Слева и справа в окне программы расположены следующие панели. • Folders (Папки). На этой панели находится древовидный список дисков и папок вашего компьютера. • Favorites (Избранное). Содержит папки Компьютер, Рабочий стол, Мои документы, Изображения. Выбор конкретной папки приводит к загрузке изображений из нее. • Filter (Фильтр). Здесь можно задать выборку отображаемых изображений по разным критериям. Например, можно скрыть рисунки, имеющие книжную ориентацию, выбрать снимки, сделанные при определенной выдержке или диафрагме. Также имеется возможность фильтровать фото по ключевым словам. • Collections (Коллекции). На данной панели можно создавать так называемые коллекции (виртуальные папки) и складывать в них фотографии, расположенные в разных папках и даже на разных дисках. • Preview (Просмотр). Предназначена для просмотра выделенного снимка. Размеры любой панели можно настраивать, поэтому вы можете увеличить размер панели Preview (Просмотр) для более детального рассмотрения фотографии. • Metadata (Метаданные). На этой панели отображается исчерпывающая информация о выделенном снимке, хранящаяся в JPEG-файле. • Keywords (Ключевые слова). Служит для присвоения снимку определенных ключевых слов. В дальнейшем по ассоциированным ключевым словам можно быстро найти нужный снимок среди сотен остальных. В основной части окна располагаются эскизы снимков, которые находятся в выделенном на панели Folders (Папки) каталоге (или на съемном носителе). Интерфейс Bridge может быть представлен в нескольких конфигурациях. Если нажать кнопку Filmstrip (Диафильм) на панели инструментов программы, панель Preview (Просмотр) займет основную часть окна, а эскизы снимков будут располагаться лентой в нижней части (рис. 2.14). Рис. 2.14. Окно программы Bridge в режиме Filmstrip (Диафильм) В режиме Metadata (Метаданные) в окне Content (Содержимое) отображается таблица с характеристиками графических файлов, содержащихся в выбранной папке. А в режиме Output (Вывод) удобно подготавливать изображения для экспорта в документ PDF или веб-галерею. Предусмотрено еще несколько вариантов конфигурации интерфейса, которые выбираются в меню, появляющемся при щелчке на треугольном значке ? справа от кнопки Output (Вывод). Чтобы посмотреть снимок «в полный рост», достаточно выделить его эскиз и нажать клавишу Пробел. Изображение развернется на весь экран, а все управляющие элементы будут скрыты. Перейти к просмотру следующего или предыдущего снимка можно с помощью клавиш управления курсором, а прокручивая колесико мыши, можно изменять отображаемый масштаб снимка. Выход из полноэкранного режима просмотра осуществляется клавишей Esc. При двойном щелчке на эскизе снимка соответствующий файл открывается в программе Photoshop. Также предусмотрена возможность отправить снимок в документ Adobe Illustrator (если эта программа установлена на компьютере). Adobe Bridge не содержит богатых возможностей для редактирования снимка. Здесь вы можете всего лишь повернуть снимок на угол, кратный 90°, изменить содержащиеся в нем метаданные, а также вызвать мастер для обработки группы файлов. Выполнение одинаковых операций над группами файлов называется пакетной обработкой. Так, например, вы можете переименовать группу выделенных файлов, задав определенный алгоритм их именования, или конвертировать группу файлов в другой графический формат, изменив при этом размеры снимков. Программа Bridge имеет собственный инструмент импорта снимков с цифровой камеры. При выборе команды меню File ? Get Photos from Camera (Файл ? Получить снимки с камеры) появляется диалоговое окно Photo Downloader (Загрузчик снимков) (рис. 2.15). Рис. 2.15. Диалоговое окно Photo Downloader (Загрузчик снимков) В раскрывающемся списке Get Photos from (Получить изображения с) выбирается подключенная к компьютеру камера или диск, ассоциированный с подключенной картой памяти. В поле Location (Расположение) указан путь к папке, в которую будут записаны импортируемые с камеры снимки. Данное поле недоступно для редактирования, поэтому, чтобы указать путь, следует нажать кнопку Browse (Обзор) и в появившемся окне указать нужную папку. В раскрывающемся списке Create SubfoLder (Создать вложенную папку) можно выбрать алгоритм именования вложенной папки, которая будет автоматически создаваться внутри папки, указанной в поле Location (Расположение). Если вложенная папка не нужна, в раскрывающемся списке Create SubfoLder (Создать вложенную папку) следует выбрать пункт None (Ничего). В раскрывающемся списке Rename Files (Переименовать файлы) можно задать алгоритм переименования файлов снимков при импортировании в указанную папку. Если переименование файлов не требуется, следует выбрать пункт Do not rename files (Не переименовывать файлы). Выбор любого другого пункта приведет к переименованию файлов с заданным алгоритмом. Далее следует несколько флажков для установки дополнительных параметров импорта. При установке флажка Delete Original Files (Удалить исходные файлы) снимки будут удалены из источника, то есть с карты памяти. Переключившись в расширенный режим импорта с помощью кнопки Advanced Dialog (Расширенный диалог), вы сможете выбрать конкретные снимки для импорта. Для этого нужные файлы следует просто пометить флажками (рис. 2.16). Рис. 2.16. Дополнительные настройки импорта После того как параметры импорта настроены, нажмите кнопку Get Photos (Получить фотографии). Снимки будут перекачаны с карты памяти в указанную папку, и одновременно с ними будут произведены заданные вами операции (например, переименование). Глава 3 Устройство цифровой камеры, цвет и «цифра» 3.1. Матрица – «сердце» цифровой камеры 3.2. Размеры и сжатие файлов 3.3. Память камеры 3.4. Питание 3.5. LCD-монитор: увидеть, снять и сразу же оценить 3.6. Цветовые модели 3.7. Монитор и его настройка 3.8. Как компьютер кодирует цвет 3.9. Калибровка устройств компьютера 3.1. Матрица – «сердце» цифровой камеры Главное различие цифровых и пленочных камер в том, что цифровая картинка создается не на пленке, а на светочувствительном электронном сенсоре. Это самая важная часть цифровой камеры, которая и определяет качество изображения. Сенсор иначе называют матрицей светочувствительных элементов (ячеек). Когда свет попадает на элементы, из которых состоит матрица, эти элементы генерируют электрический сигнал. Характеристики сигнала зависят от интенсивности светового потока. Каждый светочувствительный элемент создает одну точку получаемого изображения, или пиксел. Количество таких элементов в матрице определяет одну из важнейших характеристик камеры – ее разрешение. Затем процессор камеры с помощью программного обеспечения преобразует электрические сигналы элементов матрицы в двоичный код, состоящий из нулей и единиц. Этот код цифровая камера записывает и сохраняет. Что означают буквы CCD в характеристике матрицы? Это сокращение английских слов Charge Coaled Device – прибор с зарядовой связью (ПЗС). Это полупроводниковый прибор с вмонтированными в него проводниками. Из таких приборов (то есть из ПЗС-элементов) состоят наиболее распространенные сегодня светочувствительные матрицы (рис. 3.1). рис. 3.1. Матрица размером 1/1,8" с разрешением 4,5 мегапиксела Разрешение матрицы Мы знаем, что матрица состоит из мельчайших светочувствительных элементов. Количество таких элементов в матрице – это и есть ее разрешение. Разрешение матрицы получают умножением количества элементов по горизонтали и вертикали. Самые распространенные пиксельные значения разрешения камеры соответствуют тем, которые применяются в компьютерных мониторах: 1024 х 768, 1280 х 1024, 1600 х 1200 и т. д. Первое число означает количество пикселов по горизонтали, второе – по вертикали. Перемножив их, получим разрешение камеры. К примеру, трехмегапиксельная цифровая фотокамера позволяет получить снимок с разрешением 2000 х 1500 точек. Недостаточное разрешение камеры означает недостаток информации для правильного отображения снимка: если такую фотографию увеличить до определенных размеров, то она «распадется» на точки (вернее, на квадратики-пикселы). Округлые и искривленные границы предметов при этом окажутся как бы состоящими из ступенек (рис. 3.2). Недостаточное разрешение также может вызывать искажение цветов. Рис. 3.2. В случае недостаточного разрешения цифровое изображение распадается на пикселы Значит, чем больше мегапикселов, тем лучше камера и фотографии? И да, и нет. Если разрешение вашей камеры невелико и вы предполагаете разместить сделанную этой камерой картинку в Интернете, то проблем, скорее всего, не будет. Другое дело, если вы хотите увеличить изображение и распечатать. Снимки, сделанные шестимегапиксельной камерой, сохраняют хорошее качество в формате 21 х 16 см. Тому, кто покупает свою первую цифровую камеру, за количеством пикселов гнаться не стоит – для обычного семейного фотоальбома, для отпускных фотографий или съемки вечеринок достаточно четырех или пяти миллионов пикселов (то есть четырех или пяти мегапикселов). Но для того, чтобы распечатать изображение большего размера, разрешения камеры может оказаться недостаточно (табл. 3.1). Таблица 3.1. Зависимость максимальных размеров выводимого на печать изображения от разрешения цифровой камеры В последнее десятилетие разработка матриц стремительно развивается и столь же быстро дешевеют цифровые камеры. На рынке уже давно идет «мегапиксельная гонка». Камеры с разрешением меньше пяти мегапикселов сегодня уже практически не выпускают. Рынок цифровых камер и диапазон их характеристик изменяются так стремительно, что восьми– и даже десятимегапиксельные камеры, совсем недавно считавшиеся полупрофессиональными, сегодня относят к потребительскому классу. И все же чем больше мегапикселов, тем больше возможностей! Одних возможностей больше, а других – меньше. Гонясь за высоким разрешением, не следует забывать, что с ростом количества пикселов матрицы увеличивается объем создаваемого камерой файла изображения. Если снимки, сделанные четырехмегапиксельной камерой, «весят» около 1940 Кбайт, то из шестимегапиксельной камеры выходят фотографии размером примерно 3800 Кбайт – почти в 2 раза больше! Разница же в качестве изображения ощущается только при печати большого формата. Секрет Одинаковых матриц не бывает, как не бывает одинаковых человеческих глаз. А это значит, что не бывает совершенно одинаковых камер. Попрактиковавшись, вы постепенно изучите «характер» своей камеры и будете знать ее особенности гораздо лучше, чем разработчик и производитель. Разрешением матрицы ее характеристики не исчерпываются. Есть еще три не менее важных показателя: физический размер матрицы, ее динамический диапазон и уровень шумов. Физический размер матрицы Выбирая цифровую камеру, неплохо поинтересоваться физическим размером ее матрицы, ведь именно эта характеристика определяет качество камеры. Чем сенсор больше, тем больше он содержит ПЗС-элементов, тем выше его разрешение и, следовательно, качество получаемых фотографий. Ну да, в инструкции к моей камере говорится: «матрица 1/2,5"». Меньше полдюйма – до чего же маленькая! Верно, размер сенсора принято измерять в дюймах по диагонали. Размеры матрицы принято обозначать в виде дроби (например, 1 /2,7" или 1/2,5"). Не вдаваясь в подробности, скажу, что дюймы эти не совсем обычные и для сравнения размеров достаточно знать, что сенсор с диагональю 1 /2,7 больше, чем сенсор с диагональю 1 /2,5. Словом, тут все наоборот – чем больше знаменатель такой дроби, тем больше диагональ матрицы. Секрет Чем больше линейные размеры матрицы, тем она дороже. Сенсоры, которые устанавливают в профессиональные камеры, даже при меньшем разрешении дороже тех, которые применяются в любительских камерах. При этом некоторые производители при переходе в новой камере с четырех– на пятимегапиксельную матрицу оставляют ее линейные размеры прежними. Покупатели, разумеется, обращают внимание на количество мегапикселов, а об уменьшении размера каждого ПЗС-элемента обычно не знает никто (за исключением немногих специалистов). Возможно, поэтому многие производители в характеристиках любительских цифровых камер не указывают физических размеров светочувствительной матрицы. Чем матрица меньше, тем меньшим количеством света будет сформировано изображение, а значит, тем менее натуральными будут цвета на фотографии. Эта ненатуральность будет особенно заметна при плохом или искусственном освещении. С шумами и другими искажениями можно бороться с помощью специальных программ – графических редакторов. Но главный и неустранимый недостаток маленьких матриц – неестественность цветов и так называемый сдвиг баланса белого, то есть потеря плавности и естественности переходов между оттенками. Значит, в любом случае нужно выбирать камеру с матрицей побольше? Вовсе не обязательно! Матрицы большого размера тоже не идеальные: случается, что снимки, сделанные на «крупную» матрицу, страдают цифровыми шумами (что это такое, рассказано чуть дальше). Кроме того, у матриц малого размера есть даже преимущество перед «большими» – они обеспечивают большую глубину резкости, то есть размер четко изображаемого пространства снимка «вглубь». Профессионалы, занимающиеся студийной съемкой, считают большую глубину резкости недостатком. Но для любителя, который делает живые кадры реальной жизни без всяких манипуляций фоном и освещением, большая глубина резкости является неоценимым преимуществом. Светочувствительность Изучая характеристики цифровой камеры, вы можете увидеть что-нибудь вроде следующей фразы: «Светочувствительность эквивалентна ISO 80, 100, 200, 400, 800; устанавливается автоматически или вручную». Что это за параметр и что означают данные числа? Еще в далекие «пленочные» времена фотографы различали пленки по способности эмульсии реагировать на лучи света, или светочувствительности. Точно так же стали оценивать чувствительность различных матриц к свету. Светочувствительность матрицы точно так же, как чувствительность пленки, оценивается в единицах ISO. Чем больше число вида ISO 200, ISO 400, ISO 800, тем выше чувствительность матрицы. Фотограф может назначить нужную светочувствительность сенсора. Обычно цифровая камера настроена на оптимальную чувствительность, но многие модели позволяют изменять эти настройки, увеличивая или уменьшая светочувствительность матрицы в зависимости от условий съемки. Чтобы изменить чувствительность матрицы, найдите в меню пункт Sensitivity (Чувствительность) или ISO (рис. 3.3) и выберите нужное значение. Рис. 3.3. Современные камеры позволяют изменять чувствительность матрицы Для чего нужно увеличивать чувствительность матрицы? Высокая чувствительность позволяет сокращать продолжительность выдержки, а также снимать в очень плохих условиях освещения без использования вспышки. Цифровые шумы изображения при этом устраняются системой шумоподавления. Кроме того, высокая чувствительность позволяет избежать смазывания изображения в результате дрожания камеры. Немедленно изменю светочувствительность так, чтобы можно было снимать в сумерках! А вот с этим торопиться не следует. Прежде всего необходимо понять, что увеличение светочувствительности матрицы всего лишь усиливает электрический сигнал ее датчиков, а это приводит к шумам (подавить которые не всегда возможно) и появлению артефактов (цветных гало), то есть к искажениям изображения. Как в обычной, так и в цифровой фотографии изображение наилучшего качества получается, если выбрать минимальную чувствительность. Высокая чувствительность увеличивает контраст изображения и приводит к появлению шумов в виде синих и красных черточек на темных участках изображения. Особенно этот эффект заметен на однородных по цвету поверхностях. Фотографы рекомендуют отключать автоматический выбор чувствительности в тех камерах, где это можно делать, и устанавливать минимальную чувствительность матрицы (ISO 50 или ISO 80). Цифровой шум Может, вы слышали, как о фотографии говорят: «Хорошо, но очень уж шумно» или «Да тут, кроме шума, ничего и не видно»? Если вы видите на снимке цветные ореолы на границе резких переходов света и тени, беспорядочные цветные черточки или пятна в темных областях изображения, а также цветовые искажения, то знайте – все это цифровые шумы. Секрет Матрица меньших размеров при том же количестве мегапикселов обычно дает более шумные снимки. Дорогие, профессиональные камеры снабжены большими и малошумными сенсорами, а дешевые – маленькими и относительно шумными. Шумность снимка – важная характеристика цифрового изображения, но проявляется она только при печати с высоким разрешением на большом формате, а также при просмотре кадра на мониторе. При печати на современном струйном принтере шумы маскируются случайным (стохастическим) разбросом мелких разноцветных чернильных капель. Динамический диапазон матрицы Динамический диапазон светочувствительной матрицы – это ее способность воспринимать градации каждого из цветов. Говоря проще, динамический диапазон определяет, сколько ступеней разности контраста может увидеть и зафиксировать матрица. Идя от аналогии с фотографической пленкой, можно сказать, что динамический диапазон сенсора соответствует показателю фотографической широты пленки. Измеряется динамический диапазон в условных единицах, а для наглядности может быть определен как отношение сигнала к шуму. В качестве эталонного показателя динамического диапазона приняты градации нейтрального серого цвета. При современном уровне цифровой фототехники динамический диапазон самого совершенного сенсора лишь приближается к динамическому диапазону фотопленки. Динамический диапазон связан с другим показателем – глубиной цвета, или его разрядностью. Глубиной цвета называется количество бит, описывающих цвет одного пиксела. Как избежать неприятностей при покупке цифровой камеры Высокоточное и абсолютно чистое производство светочувствительных матриц до сих пор не в состоянии обеспечить стопроцентную работоспособность формирующих ее ПЗС-элементов. Дело не в дефектах технологии, а в том, что каждый элемент настолько мал, что на его качестве сказывается молекулярное строение и его способны вывести из строя даже несколько посторонних молекул. Получается, что практически в каждой матрице есть несколько неработающих элементов. Этот неизбежный дефект называют битыми пикселами. Обнаружить битые пикселы трудно, разве что если они объединены в группу. Секрет При покупке цифровой камеры будет нелишним проверить ее на битые пикселы. Раз вы собрались покупать фотоаппарат, вам, скорее всего, придется приобрести к нему карту памяти, так как производители обычно комплектуют камеры минимальным объемом памяти. Попросите разрешения продавца сделать несколько тестовых снимков с использованием вашей собственной карты. Снимки лучше делать, закрыв объектив крышкой, если она есть. А если нет, то сфотографируйте какой-нибудь темный предмет с выдержкой 1 секунда (если камера позволяет устанавливать выдержку). Лучше, если в помещении при этом будет темно. Запишите серийный номер камеры и попросите продавца отложить ее. Сделанный снимок просмотрите в масштабе 1:1 на компьютере. Если вы готовы мириться с двумя-тремя битыми пикселами, проявляющимися при этой выдержке и незаметными при меньших выдержках, то все в порядке. Но если в кадре появились яркие точки даже при выдержке 1/100 и короче, то от этой камеры лучше отказаться. Если на снимках, сделанных уже купленной камерой при коротких выдержках, видны десятки стопроцентно ярких битых пикселов, то это причина вспомнить о гарантии на камеру. Во всех остальных случаях с битыми пикселами можно справиться, откорректировав снимки с помощью графического редактора Adobe Photoshop или другого. Разумеется, производители матриц хоть сегодня могут ужесточить критерии качества раз этак в десять, вот только конечная цена их продукции при этом возрастет примерно во столько же раз. Мы уже говорили о том, что вы заплатили за матрицу примерно половину стоимости цифровой камеры. А сколько бы стоила камера с матрицей повышенного качества? Как минимум вдвое дороже. Два простых правила обращения с цифровой камерой Светочувствительная матрица – не только самый сложный и дорогой элемент цифровой камеры, но и самый уязвимый. Из-за электрохимического износа матрица стареет и теряет светочувствительность. Но срок жизни вашей камеры можно продлить, если уберечь ее «сердце» от вредных внешних воздействий. • Больше всего матрица боится низких температур. Пленочная камера будет работать даже на 40-градусном морозе, а цифровая камера – нет. Даже при -10 °C светочувствительность сенсора цифровой камеры может существенно уменьшиться. Кроме того, вы вряд ли сможете воспользоваться жидкокристаллическим монитором как видоискателем: его изображение станет очень светлым и малоконтрастным. Могут пострадать и аккумуляторы. Защитить камеру от холода можно, если держать ее в тепле, под верхней одеждой и, сделав снимки на морозе, сразу же прятать ее обратно, в тепло. • Если камера замерзла и, придя в теплое помещение, вы заметили, что она покрылась капельками влаги, нужно вынуть аккумуляторы и убрать камеру в чехол. Пользоваться фотоаппаратом снова можно не раньше, чем его температура сравняется с температурой помещения. Иначе капли влаги, которые образовались на линзах и на поверхности сенсора, могут привести к серьезным, а иногда и к необратимым повреждениям. 3.2. Размеры и сжатие файлов Для чего нужно сжимать изображение Картинка, полученная с помощью шестимегапиксельной камеры, должна занять 18 Мбайт памяти. Если изображение записывать в память в таком виде, то даже в запоминающее устройство большой емкости удастся уместить лишь несколько снимков. Поэтому перед записью в память изображения нужно обработать – подвергнуть сжатию, или компрессии. • Сжатие без потерь – самый простой метод компрессии. Он заключается в том, что однотипные последовательности цифр записываются в иной, компактной форме. Но таким способом удается уменьшить объем записи не в разы, а лишь на десятки процентов. А этого мало. Поэтому такой способ компрессии применяется лишь в тех случаях, когда требуется получить изображение самого высокого качества. Но для массовых, потребительских камер этот метод не годится. Найденный разработчиками выход был основан на том, что человеческий глаз несовершенен, так как он не распознает нерезкие изменения цветов или яркости. • Сжатие с потерями (так называемый JPEG-метод) основан на решении пожертвовать частью информации об изображении. Для этого значения цветности и яркости в группах соседних пикселов попросту усреднили. Рассмотрим некоторые форматы графических файлов для растровых изображений, а затем попытаемся сделать выводы из прочитанного материала. Форматы файлов Существует множество способов сохранить информацию об изображении и, следовательно, множество форматов файлов. Внимание! Чтобы избежать потерь данных, при работе с изображениями сохраняйте их в формате TIFF или в «родном» формате программы-редактора. JPEG В большинстве камер используется формат сжатия JPEG (Joint Photographic Experts Group – это название группы экспертов в области фотографии, разработавшей данный алгоритм). Формат JPEG позволяет создавать и хранить изображения высокого качества и относительно небольшого размера. Изображение в этом формате можно просмотреть на любом компьютере (PC или Macintosh). Размеры файлов JPEG невелики, поэтому они пригодны для размещения изображений в Интернете. JPEG-метод основан на том, что человеческий глаз различает цвета намного хуже, чем черно-белое изображение. Если информацию о цвете сохранить не полностью, то на глаз это будет совсем незаметно. Поэтому в памяти камеры сохраняется лишь часть информации, которую несет матрица. Ради сокращения объема изображения разработчики JPEG сознательно решили пожертвовать частью информации об изображении. Поэтому искажений картинки, сжатой с помощью JPEG-метода, не избежать. Зато данный метод позволяет уменьшить объем записываемого изображения в десятки раз и тем самым сэкономить память. Важно! Файлы JPEG практически не сжимаются программами-архиваторами. При сохранении файла в формате JPEG можно задать степень его сжатия. К примеру, если в программе Photoshop или Adobe Photoshop Elements выбрать команду Save As (Сохранить как), то откроется окно, в котором степень сжатия можно указать с помощью параметра Quality (Качество). При этом степень сжатия изображения будет тем ниже, чем в лучшем качестве вы решите его сохранить. При компрессии изображения в формат JPEG часть информации неизбежно теряется. В процессе редактирования JPEG-файла и при неоднократном его сохранении в нем накапливаются ошибки сжатия с потерями: уменьшаются резкость и количество цветов, появляются видимые глазом артефакты сжатия (мозаичность изображения) и шумы. Формат JPEG прекрасно подходит для просмотра изображений, а вот редактировать их лучше в другом формате. Лучше всего в том, который позволяет сжимать без потерь. Если ваша камера сохраняет снимки только в формате JPEG, то лучше передавать их на компьютер непосредственно с носителя, а затем открывать в приложении и сохранять для редактирования в формате TIFF, BMP или PSD. Кроме небольших размеров и универсальности, у JPEG есть замечательная особенность, благодаря которой вы всегда можете знать, где, когда и как была снята фотография. Дело в том, что информация обо всем этом сохраняется в JPEG-файле вместе с собственно изображением. Такая информация называется метаданными. Они записываются в формате EXIF (Exchangeable Image File Format) и содержат дату и время съемки, марку цифровой камеры, параметры экспонирования (ISO, выдержка, диафрагма) и другую дополнительную информацию (рис. 3.4). Рис. 3.4. Просмотр метаданных файла в программе ACDSee Важно! Если исходный файл изображения открыть в программе-редакторе и затем сохранить его, то метаданные могут быть утеряны. Это еще одна причина того, чтобы работать только с копиями файлов. TIFF Это один из самых универсальных форматов растровых изображений. Он разрешает пользователю выбрать алгоритм сжатия и даже отключить его. Изображения в формате TIFF (Tagged Image File Format – документированный формат файлов изображений) можно открывать на компьютерах РС и Macintosh. TIFF использует сжатие без потерь, поэтому файлы данного формата очень велики. Например, объем файла, инвертированного из JPEG в TIFF, увеличивается в 8 или 10 раз, а снимок в этом формате может занимать несколько мегабайт. А, как известно, чем больше размер файла, тем меньше снимков помещается на карте памяти. Поэтому для пересылки по электронной почте и для размещения изображений в Интернете формат TIFF не подходит. После того как закончена обработка снимка, его желательно сохранить (и хранить в дальнейшем) в формате TIFF. Но переключать камеру на этот формат не следует: запись на карту памяти пойдет очень медленно, и к тому же повышенный расход ресурса памяти вряд ли оправдан (если вы, конечно, не профессиональный фотограф). При сохранении изображения в формате TIFF можно выбрать метод его сжатия. В программе Photoshop (или Adobe Photoshop Elements) при этом открывается окно, в котором следует сделать выбор. Типичными параметрами являются Byte Order (Порядок байт) IBM PC и метод сжатия LZW (это сжатие без потери данных). RAW Дорогие цифровые камеры позволяют сохранять изображения в формате RAW (raw в переводе с английского означает «сырой»), отчего файлы с расширением RAW иногда называют «цифровым негативом». Внутри камеры такой файл не подвергается никакой обработке, то есть теоретически изображение сохраняется в абсолютно неискаженном виде. При этом файл изображения в этом формате несет даже больше информации, чем в TIFF, а объем занимает гораздо меньший. Многие фотографы-любители без ума от свойств формата RAW, потому что преобразование RAW-файлов на компьютере позволяет использовать более сложные и изощренные алгоритмы интерполяции, а также потому, что ошибки можно исправить сразу после съемки. Другие пользователи утверждают, что формат RAW ни в чем не превосходит другие известные форматы изображений (кроме как, быть может, по огромному количеству недостатков). Но мы с вами не станем спорить со специалистами, а просто примем к сведению существование формата RAW. Следует знать Если на жестком диске мало места для хранения снимков, то сохраняйте их в формате JPEG. Этот формат лучше всего подходит для пересылки файлов по электронной почте и для размещения в Интернете. Если места на жестком диске достаточно, то лучше хранить изображения в форматах, позволяющих сжимать без потерь, – TIFF и PICT Эти же форматы наилучшим образом подойдут для снимков, которые в дальнейшем будут редактироваться. Учтите, что формат TIFF наиболее универсальный, так как с ним работают и машины на платформе Windows, и компьютеры Macintosh. 3.3. Память камеры Для хранения снимков в камере не обойтись без запоминающих устройств. Сейчас большинство камер имеет сменную flash-память, которая хранит информацию без потребления энергии и, кроме того, позволяет подсоединить портативный накопитель большой емкости. Съемная карта памяти помещается в специальном отсеке цифровой камеры, или, правильнее сказать, в слоте. Разновидности носителей для цифровых камер Сравнивая достоинства цифровых камер, обращают внимание на тип используемой памяти. Всегда следует знать, насколько память камеры совместима с другими устройствами и не обернется ли дешевизна цифровой камеры дороговизной или даже помехой в эксплуатации. Перечислю известные сегодня устройства хранения информации, используемые в цифровых фотоаппаратах. MiniSD Изредка в цифровых камерах применяются устройства miniSD. Они не слишком надежные и, кроме того, обладают довольно низкой скоростью считывания. Зато имеют относительно небольшие габариты. В январе 2007 года компания SanDisk представила новое поколение карт этого типа под названием miniSDHC. Несмотря на то что эти карты по форме такие же, как обычные miniSD, в большинстве случаев они несовместимы с устройствами, которые поддерживают miniSD. CompactFlash Формат памяти CompactFlash долгое время был одним из самых распространенных, и даже сегодня можно найти множество устройств, которые с ним работают. В картах CompactFlash нет движущихся частей, и потребляют они сравнительно мало энергии (3,3–5 В), что сделало эти карты суперпопулярными у производителей цифровой фототехники. Карты CompactFlash прочные и долговечные. Производители утверждают, что они могут хранить информацию хоть 100 лет. MultiMedia Card Крохотные, размером c почтовую марку MultiMedia Card – одни из самых миниатюрных устройств хранения данных небольшой емкости. Они даже тоньше, чем CompactFlash! Изначально MultiMedia Card были задуманы для портативных телефонных аппаратов. Малые размер и вес этих устройств, простой интерфейс и пониженное потребление энергии привлекли внимание производителей различных цифровых устройств. MultiMedia Card чаще используются в «гибридных» устройствах вроде цифровой фотокамеры со встроенным МР3-плеером, а также (иногда) в мобильных телефонах с поддержкой мультимедиасообщений. Гонка производителей оперативной памяти за миниатюризацией привела к появлению варианта MultiMedia Card, который называется RS-MMC (Reduced Size MultiMedia Card – мультимедиакарта уменьшенного размера). Теперь такие карты широко используются в смартфонах и мобильных телефонах нового поколения. Memory Stick от Sony Приступая к разделу о памяти Memory Stick, самое время воскликнуть: «Покупатель, будь внимателен при выборе камеры!» Дело в том, что камеры, в которых предусматривается использование этого вида памяти, выпускает только корпорация Sony. Другие типы памяти для таких камер не годятся. Память Memory Stick от Sony с виду похожа на пластинку жевательной резинки, но широкого применения пока не нашла. Еще бы – закрытый стандарт и высокая стоимость. Secure Digital Самый распространенный в наши дни формат памяти называется SD (Secure Digital). Эти карты вмещают до 4 Гбайт данных, а новая спецификация SDHC (Secure Digital High-Capacity) дает возможность хранить до 32 Гбайт. Карты SD снабжены криптозащитой от несанкционированного копирования и защитой от случайного стирания и разрушения. Такие свойства вызвали большой интерес как у медиакорпораций, так и у потребителей, порой желающих, чтобы картинки из личной жизни не могли быть скопированы без их ведома. Слот для SD принимает и MultiMedia Card, что делает «безопасный» формат еще более перспективным. Немаловажно и то, что карты SD потребляют совсем немного энергии и довольно прочные. xD-Picture Карты этого типа используются преимущественно в фотоаппаратах Olympus и FujiFilm, в то время как другие производители склоняются к более распространенному типу Secure Digital. Карты xD-Picture также применяются в диктофонах Olympus и в некоторых MP3-плеерах. 3.4. Питание Энергию потребляют все устройства и функции цифровой камеры, начиная с LCD-экрана и заканчивая настройками автофокуса и баланса белого цвета. Поэтому запас энергии, который содержится в батарейках, истощается очень быстро. Из всех устройств, которыми снабжена цифровая камера, больше всего энергии потребляют LCD-экран, вспышка и, если речь идет о фотоаппарате с зум-объективом, электромотор, перемещающий системы линз. Вот четыре правила, следование которым поможет вам сберечь заряд батарей. 1. Не стоит увлекаться использованием программного режима съемки, так как сюжетные программы автоматически активизируют вспышку. 2. Не следует излишне часто включать и выключать камеру. Это ведет к повышенному расходу энергии, особенно у камер с зум-объективом. Лучше воспользоваться автоматикой, переключающей ее в «спящий» режим. В этом режиме камера потребляет очень мало энергии. 3. Не забудьте проверить, отключается ли камера автоматически, по таймеру. Если таймера нет, то в один прекрасный день вы забудете выключить фотоаппарат, а потом будете удивляться, кто «слопал» весь заряд аккумуляторов. 4. Если ваша камера предусматривает использование «пальчиковых» батарей типа АА, то не стоит пользоваться простыми щелочными, или «алкалайн». Вы и оглянуться не успеете, как на жидкокристаллическом экране зажжется строгая надпись Low Battery! Секрет Лишь руки владельца цифровой камеры делают ее экономичной или «прожорливой». Большинство современных камер комплектуется литий-ионными (Li-Ion) аккумуляторами. Они практически избавлены от «эффекта памяти», который присутствовал в старых аккумуляторах. Обычно такие аккумуляторы разрабатываются самим производителем для конкретного модельного ряда. Они имеют больше циклов перезарядки, чем устаревшие никель-металлогидридные (Ni-MH) аккумуляторы. Хороший фотограф – уверенный фотограф, а уверенность появится лишь тогда, когда с собой у вас будут два или даже три аккумулятора. Большинство камер продается вместе с аккумулятором и зарядным устройством. Однако производители часто экономят и, желая снизить цену камеры, комплектуют ее аккумулятором небольшой емкости. Дополнительные аккумуляторы, которые предлагается докупать отдельно, имеют большую емкость. Не сомневайтесь – они сразу себя окупят. А если сомневаетесь, что ж, помучайтесь с тем, который прилагается к камере. Приведу шесть правил предусмотрительного фотографа, не желающего остаться без источника энергии. 1. Не экономьте на аккумуляторах. Покупайте только фирменные. 2. Следите, чтобы не перепутать пустые и заряженные аккумуляторы. 3. Заряженные аккумуляторы храните в тепле. Камеру со вставленными в нее аккумуляторами тоже нельзя оставлять на холоде. 4. Перед дальней поездкой убедитесь, что у вас есть не менее двух аккумуляторов. 5. Перед долгой поездкой или походом лучше заряжать аккумуляторы в последний день. Что если их будет негде подзарядить? 6. В ситуациях, когда важнее сэкономить не память карты, а питание, старайтесь меньше пользоваться LCD-монитором и непрерывной съемкой или не пользоваться ими вовсе. В конце концов, видоискатель тоже неплох. То же относится к вспышке: для экономии следует ее отключить, если конструкция камеры предусматривает эту возможность. 3.5. LCD-монитор: увидеть, снять и сразу же оценить Жидкокристаллическим экраном (LCD Screen – Liquid Crystal Diode Screen) снабжены все современные модели камер. Некоторые LCD-дисплеи предназначены лишь для просмотра только что сделанного снимка. Но большинство экранов работают в режиме видоискателя, или, как еще говорят, в активном режиме, то есть непрерывно показывают в реальном времени то, что «видит» объектив фотоаппарата. На экране может отражаться и другая информация: дата и время, состояние аккумулятора, количество сделанных снимков и т. п. После нажатия кнопки спуска сделанный снимок можно сразу же вызвать на LCD-экран, чтобы оценить если не его качество (экран все же достаточно мал), то композицию, а неудачный кадр можно тут же стереть. Можно просмотреть одну за другой все фотографии, которые находятся в памяти, и удалить ненужные. Это позволяет сделать в несколько раз больше кадров, чем вмещает камера и даже внешний носитель! Таким образом экономится свободная память камеры. Вот сколько пользы от маленького жидкокристаллического экрана! Особенно высоко фотографы оценивают поворотные LCD-мониторы – они вращаются относительно корпуса камеры. Существуют два вида конструкции «поворотников»: • экран-«книжка», вращающийся относительно камеры лишь в одной плоскости; • экран, перемещающийся относительно камеры в нескольких плоскостях. Видоискатель Оптический видоискатель не слишком удобен, но он незаменим при ярком свете, когда на LCD-экране невозможно ничего разглядеть. Поэтому лучше, если камера снабжена и оптическим видоискателем, и LCD-экраном. В более дорогих моделях видоискатель TTL (Through The Lens) может обладать свойством просмотра через объектив, аналогично видоискателям зеркальных пленочных камер. В этом случае картинки в видоискателе и на LCD-мониторе совпадают. В некоторых моделях цифровых камер используются жидкокристаллические видоискатели, представленные в виде очень маленьких (12 мм по диагонали) жидкокристаллических экранов. На такой видоискатель выводится непрерывный видеосигнал прямо с матрицы. По точности и разрешению данные устройства проигрывают стандартному TTL-видоискателю, и все же они весьма популярны. Кроме того, на жидкокристаллический видоискатель проецируется информация, аналогичная той, которую можно увидеть на LCD-мониторе. Уход за LCD-монитором Пусть даже вы очень аккуратны, но пыли, отпечатков пальцев и пятен на дисплее вам не избежать (разве что вы так и не доставали камеру из герметичной пластиковой упаковки). Как же очищать монитор от неизбежной грязи? Ни в коем случае нельзя вытирать его носовым платком и даже бархоткой для протирки очков из магазина «Оптика». Так вы лишь поцарапаете хрупкое устройство. Для очистки «начерно» можно сдуть пыль резиновой грушей или смахнуть ее очень мягкой кисточкой для рисования. Для очистки оптики и дисплея в фотомагазинах продаются специальные наборы. Непременно обзаведитесь таким. 3.6. Цветовые модели На пути от картинки, пойманной фотографом в видоискатель, до печатного снимка свет, зафиксированный камерой, претерпевает множество изменений. Рассматривая готовый снимок, часто приходится сожалеть, что оптика и техника записи изображения не в состоянии точно передать цвета, которые наблюдает в природе человеческий глаз. Это происходит оттого, что в процессе записи, обработки и вывода изображения на печать часть информации, записанной на матрицу, неизбежно теряется. Кроме того: • цвета изображения, рассматриваемого на мониторе, зависят от настроек монитора; • цвета изображения, распечатанного на принтере, отличаются от тех, которые видны на мониторе, и зависят от настроек принтера; • если монитор и принтер настроены по-разному, то эти различия увеличатся еще больше; • не следует забывать и о том, что монитор передает большее количество оттенков, чем принтер. Дело в том, что одни цвета мы видим благодаря внутреннему излучению, то есть проходящему сквозь изображение свету (например, изображение телевизора или слайда). Другие цвета получаются отражением цвета от поверхности изображения (примером здесь может быть рисунок на бумаге или фотография). В случае внутреннего излучения предметы приобретают тот цвет, который мы видим. В случае же отраженного света цвет изображения складывается из цвета, который падает на эту поверхность, и цвета, который этот объект отражает. Иначе говоря, различные устройства используют противоположные системы воспроизведения цвета: аддитивную и субтрактивную. • Аддитивный цвет (от англ. add – «добавлять», «складывать») получается при соединении лучей света разных цветов. Система аддитивных цветов работает с излучаемым светом (например, от монитора). В этой системе белый цвет получается в результате сложения всех цветов, а черный означает отсутствие какого бы то ни было цвета (например, черный экран неработающего монитора). • В системе субтрактивных цветов (от англ. subtract – «вычитать») происходит противоположный процесс: какой-либо цвет получается вычитанием других цветов из общего луча отраженного света. Здесь белый цвет появляется в результате отсутствия всех цветов (аналогично белой, не тронутой кистью бумаге), а сумма всех цветов дает черный. Система субтрактивных цветов работает с отраженным светом (к примеру, со светом, отраженным от листа бумаги). Белая бумага отражает все цвета, а окрашенная – лишь некоторые из них, поглощая остальные. Кстати Монитор – самый информативный инструмент для работы с цветом, позволяющий определить качество изображения. Те, кто профессионально работают с изображением, калибруют свои монитор и принтер с помощью специального оборудования и программ. Наиболее популярная программа для калибровки мониторов – Adobe Gamma, ранее входившая в пакет Photoshop. Она позволяет настраивать монитор, сравнивая экранное изображение с оригиналом, и корректировать оттенки визуально. Калибровка принтеров еще сложнее: она требует знания параметров красок для печати. Для наиболее качественной передачи цветов лучше всего использовать файлы цветовых профилей, которые выпускаются к конкретным моделям принтеров и даже к конкретным типам бумаги. Цвета в природе редко являются простыми. Большинство цветов получается смешением каких-либо других. Для упрощения работы с цветом было введено понятие цветовой модели, позволившее представить огромное количество оттенков в виде суммы простых цветов, составляющих эти оттенки. Цветовой моделью, или цветовым пространством, называется представление цвета в виде комбинации основных цветов. RGB Цветовая модель RGB (Red, Green, Blue – красный, зеленый, синий) – это наиболее стандартный способ описания цвета, или, как говорят, цветового пространства. Данная модель используется в таких излучающих свет устройствах, как телевизионные кинескопы и компьютерные мониторы. Кстати Принтер генерирует цвет иным способом, поэтому модель RGB не очень подходит для комплекса из сканера, принтера и монитора. Для воссоздания цветов, встречающихся в природе, устройства, основанные на цветовой модели RGB, смешивают (складывают, соединяют) три первичных цвета RGB. Смешение красного, синего и зеленого цветов позволяет получить все остальные цвета. Смесь 100 % всех трех цветов в одинаковых пропорциях дает белый, а смесь 0 % всех трех цветов – черный. Такая модель соответствует восприятию цветов человеческим глазом, но для корректного преобразования цветного изображения в изображение в градациях серого эта модель не подходит. Формирование изображения в цветовой модели RGB схематически можно представить в виде красного, зеленого и синего источников света, расположенных близко друг к другу (рис. 3.5). Рис. 3.5. Три первичных цвета RGB при смешивании дают белый цвет Пусть каждый источник может светить с различной яркостью – от нуля до максимума. Нулевая яркость означает, что источник не светит, а отсутствие света – это черный цвет. Если все три источника света светят с максимальной яркостью, то в центре, где цвета взаимно накладываются, образуется пятно абсолютно белого цвета. Таким образом, в модели RGB и черный, и белый цвета являются результатом смешивания трех основных цветов. На практике это означает, что если в пикселе содержатся равные количества красного, зеленого и синего цвета, то данный пиксел передает один из оттенков серого. Чем количества цветов больше, тем светлее оттенок серого. Если же цвета представлены в пикселе в неравных количествах, то мы видим цвет, причем цветовой тон определяется соотношением в нем красного, зеленого и синего цветов. CMYK В цветовой модели, которую использует полиграфия, работающая с отраженным цветом, основными являются Cyan – голубой, Magenta – пурпурный и Yellow – желтый цвета, противоположные красному, зеленому и синему. Смесь этих основных цветов составляет цветные изображения, которые вы видите в журналах и книгах. Чтобы понять, как работает модель CMYK, представим лист бумаги и три краски – голубую, пурпурную и желтую. Если закрасить часть листа всеми тремя красками, то получится черный цвет. Неокрашенная бумага так и останется белой. При смешивании этих цветов в равной пропорции в идеале должен получиться черный цвет (рис. 3.6). Но на практике из-за того, что типографская краска не поглощает цвет полностью, комбинация трех основных цветов не дает черного цвета. Чтобы поправить дело, в модель ввели четвертый цвет – черный – и обозначили его буквой K. Рис. 3.6. Три первичных цвета CMYK при смешивании дают черный цвет Диапазон представления цветов в модели CMYK ?же, чем в RGB, поэтому при преобразовании данных из RGB в CMYK цвета кажутся «грязнее». Lab Чтобы получить наиболее предсказуемый результат, была создана аппаратно-независимая модель Lab. Цвет в ней определяется «светлотой» (Light) и двумя цветовыми параметрами: a, изменяющимся в диапазоне от зеленого до красного, и b, изменяющимся в диапазоне от синего до желтого. В этой модели (или цветовом пространстве) данные о цвете и яркости не зависят друг от друга. Это позволяет изменять тоновые градационные характеристики изображения, не затрагивая цветовые. Модель Lab обладает самым широким цветовым охватом (включает в себя CMYK, RGB и другие цвета). Часто эта модель используется в программах для перевода цветов из одной модели в другую. 3.7. Монитор и его настройка Для того, кто занят цифровой фотографией, пусть даже как любитель, монитор приобретает особую важность. Ведь как иначе оценить качество цифрового фотоснимка, если не на экране компьютера? Следовательно, монитор должен передавать изображение максимально точно. Делая «пленочную» фотографию, особое внимание уделяют качественным материалам – пленке и фотобумаге. Для компьютерного изображения монитор и есть та «фотобумага», которая воспроизводит все нюансы и оттенки цифрового снимка. Первая характеристика монитора – его размер, то есть длина диагонали экрана. Для работы с изображениями лучше всего подходят мониторы с размером диагонали экрана от 19 дюймов и больше. Здесь справедлив принцип «чем больше, тем лучше». Вторая характеристика монитора – его разрешение, или количество пикселов, которые он может отобразить. Числа, в которых выражается абсолютное значение разрешения, определяют ширину и высоту его рабочей области. Если речь идет о разрешении монитора 1280 х 1024, то это означает, что ширина его рабочей области равна 1280 пикселам, а высота – 1024. Для жидкокристаллических мониторов существует стандартное значение разрешения, которое разработчики рекомендуют для использования. Как правило, при работе с ЖК-мониторами можно переключаться на другое разрешение, однако при этом могут наблюдаться «замыливание», некорректное отображение шрифтов и другие дефекты изображения. Поэтому рекомендуется использовать стандартное (как правило, оно максимальное) разрешение (табл. 3.2). Таблица 3.2. Стандартные разрешения ЖК-мониторов Разрешение матрицы, а также изображения, монитора или принтера измеряется в точках – пикселах. Чтобы оценить относительное значение этого параметра, применяется специальная единица dpi (dots per inch – количество точек на дюйм) или ppi (pixels per inch – количество пикселов на дюйм). Разрешение тем выше, чем больше число dpi. Важно! Разрешение стандартного монитора равно 72 ppi, что указывает плотность, с которой расположены пикселы на выводимом изображении. ЖК-мониторы плоские, легкие, занимают немного места, а цены на них в последнее время значительно снизились. Изображение на них достаточно четкое, а прямая адресация пикселов исключает геометрические искажения. Но для работы с изображениями мало купить качественные монитор и видеокарту. Их еще нужно правильно настроить и откалибровать. Плохо настроенная видеосистема портит ваши глаза и, кроме того, неверно передает цвета и формы. Изменение настроек монитора влияет на восприятие изображения, и порой снимок, выглядящий на экране бледным и невыразительным, на печати просто расцветает. Но бывает и наоборот. Чтобы перейти к настройкам монитора и видеоадаптера, щелкните правой кнопкой мыши на Рабочем столе и в появившемся контекстном меню выберите пункт Персонализация. Появится окно, в котором следует перейти по ссылке Экран, а затем – по ссылке Настройка разрешения экрана. Появится окно Разрешение экрана (рис. 3.7). Рис. 3.7. Изменение разрешения экрана Примечание Описываемые здесь действия применимы к операционной системе Windows 7. Методы вызова диалоговых окон для настройки видеосистемы в более ранних версиях Windows несколько отличаются. Разрешение монитора задается в раскрывающемся списке Разрешение. Как видите, рекомендованное разрешение для данного монитора отмечено. Второй важный параметр видеосистемы – Качество цветопередачи. С его помощью задается глубина цвета, или, иначе говоря, количество воспроизводимых цветов и оттенков. Для мониторов и видеокарт могут быть установлены следующие значения: • среднее (High Color) – 16 бит; • самое высокое (True Color) – 24 или 32 бита. Для большинства приложений оптимальна 16-битная палитра (65 000 цветов или более для Windows и 32 000 цветов или более для Macintosh). Если вы работаете в основном с текстом и качество отображения графики для вас не имеет значения, то можете установить эту палитру. Палитру с глубиной цвета 32 бита используют те, кто профессионально работает со сложной графикой и выполняет высококачественную обработку изображений и фотографий в полиграфических и издательских системах. Частота обновления экрана – не столь важный параметр для жидкокристаллических мониторов, но иногда при смене этого параметра невооруженным глазом заметно улучшение картинки. Работать на ЖК-мониторе рекомендуется при частоте обновления 60 Гц. Операционная система разрешает устанавливать только те значения частоты развертки, которые поддерживают графическая плата и монитор. Если ОС не распознала монитор или видеокарту, это означает, что она не нашла нужный драйвер. Сведения о подключенном мониторе отображаются на вкладке Монитор диалогового окна свойств системы (рис. 3.8). Нажав кнопку Свойства, вы откроете окно свойств монитора, с помощью которого можно переустановить или выбрать подходящий драйвер. Рис. 3.8. Вкладка Монитор диалогового окна свойств видеосистемы Обратите внимание, что на вкладке Монитор можно также задать частоту обновления экрана и качество цветопередачи. 3.8. Как компьютер кодирует цвет Глубина цвета Вся информация на компьютере представлена в виде битов. Количество битов, которым описывается цвет одного пиксела, называется глубиной цвета. Один бит передает только два состояния: «ноль-единица», «выключено-включено». Если компьютер имеет дело с черно-белым изображением, то для описания каждого пиксела хватит одного бита: состоянию «выключен» будет соответствовать черный цвет, а состоянию «включен» – белый. Получается, что черно-белое изображение имеет однобитную глубину цвета. Двумя битами можно описать четыре цвета, а тремя – восемь цветов. Важно! Чем больше глубина цвета, то есть количество битов, описывающих один пиксел, тем больше цветов и оттенков может передать устройство. Мы помним, что цветовая модель RGB состоит из трех основных цветов. Все цвета в цифровом фотоаппарате создаются с помощью комбинации трех основных цветов: красного, зеленого и синего. Эти три главных цвета также называются каналами, а битовые значения цветов – их интенсивностью. Если цифровая камера отводит каждому каналу по 8 бит, то получается, что один пиксел представлен 24 битами. Кстати В данной ситуации многие путаются, забывая, что, если речь идет, скажем, о 36-битном цвете, это означает лишь то, что для записи каждого цветового канала отводится 12 бит. 24-битный цвет (его иногда называют True Color, потому что он первым в цифровом мире по количеству цветов приблизился к уровню восприятия человеческого глаза) отводит по 8 бит на каждый канал. Если камера записывает каждый канал 8 битами, то это значит, что она способна передать более 16 млн оттенков. Чем больше битовая глубина цвета, тем более детальным получается изображение, а переходы оттенков более плавными. Особенно это касается затененных и ярко освещенных объектов. Поэтому, в дополнение к лучшей оптике и большим возможностям, профессиональные цифровые камеры отличаются большей глубиной цвета. Кстати Программа Photoshop позволяет преобразовывать глубину цвета изображения. Вот одна из «хитростей» этой программы: если снимок с глубиной цвета 8 бит преобразовать в 16-битный, настроить его цвет, яркость и контраст, а потом «перегнать» обратно, в 8-битный режим, то качество изображения заметно повысится. Для этого следует выполнить команду Image ? Mode ? 16 Bits/Channel (Изображение ? Режим ? 16 бит/канал), а затем, задав нужные настройки, аналогичным образом снова преобразовать изображение в 8-битный режим. Цветовые режимы Битовая карта В режиме битовой карты (Bitmap) глубина цвета равна единице, следовательно, каждый пиксел может быть черного или белого цвета. Таким образом, изображение в режиме битовой карты будет монохромным. Файлы изображений, выполненных в режиме битовой карты, имеют небольшой объем. Этот «экономный» тип изображений используется нечасто, в основном для векторной графики – чертежей, гравюр, штриховых иллюстраций. В данном режиме можно выполнять несложные логотипы. Любое изображение можно перевести в режим битовой карты (например, чтобы представить и распечатать фотографию в виде гравюры – очень эффектный ход). Но цветное изображение перевести непосредственно в черно-белое нельзя. Сначала его нужно преобразовать в полутоновое, следовательно, изготовление «гравюры» состоит из двух несложных этапов. Заметьте, что исходное изображение в модели RGB содержит четыре цветовых канала, что видно на соответствующей палитре. 1. В меню Image (Изображение) программы Photoshop выберем Mode (Режим), а в нем пункт Grayscale (Оттенки серого). Теперь изображение переведено в полутоновый режим (рис. 3.9), который содержит все оттенки серого цвета. На палитре цветов остался лишь один цветовой канал. Рис. 3.9. Изображение в полутоновом режиме 2. Теперь выполним команду Image ? Adjustments ? Threshold (Изображение ? Настройки ? Порог). Все пикселы изображения, яркость которых больше определенного уровня, станут белыми, а остальные – черными (рис. 3.10). Этот уровень можно изменять, добиваясь нужного вида «фотогравюры». Рис. 3.10. Изображение в режиме битовой карты Полутоновый режим Полутоновые изображения используются для хранения черно-белых (в традиционном, фотографическом смысле) фотографий, а также в тех случаях, когда без цвета можно обойтись. Каждый пиксел такого изображения кодируется 8 битами, то есть одним 8-битным каналом, и может иметь один из 256 оттенков серого с яркостью от черного (0) до белого (255). Этот диапазон значений называют серой шкалой (grayscale). 256 оттенков серого для каждого пиксела достаточно, чтобы правильно отобразить полутоновое изображение (например, черно-белую фотографию). Очевидно, что полутоновое изображение займет в восемь раз больше места в памяти, чем монохромное. Любое изображение можно превратить в полутоновое. Если исходный материал – цветная фотография, то она станет черно-белой. Полутоновое изображение содержит только один канал. Индексированные цвета Режим индексированных цветов не используется при обработке изображений, но он очень удобен для создания элементов простой окраски, вроде логотипов или разного рода кнопок на веб-страницах. В этом режиме изображение передается определенным количеством цветов, которые определяются по таблице или с помощью палитры цветов. Важно! Если вы собираетесь печатать изображение, то не работайте в режиме RGB, а с самого начала установите модель CMYK. Если изображение, с которым вы работаете, предназначено для просмотра на веб-странице, то используйте режим Indexed Color (Индексированные цвета) или работайте в RGB, а затем преобразуйте результат в режим индексированных цветов. 3.9. Калибровка устройств компьютера Профили устройств Что делать, если один и тот же файл на разных мониторах выглядит по-разному? И откуда берутся различия в картинке, если один и тот же снимок распечатать на разных принтерах? В таких случаях устройства чаще всего оказываются в полном порядке. Но прежде, чем ответить на эти вопросы, следует задать еще один: «Верно ли построены профили монитора, который показывает такую красивую картинку, и принтера, который не желает ее правильно читать?» Дело в том, что в цветовых моделях RGB и CMYK один и тот же оттенок на разных устройствах выглядит по-разному. Каждый монитор характеризуется своим RGB-пространством, а каждый принтер – своим CMYK-пространством. Кроме того, преобразование из RGB в CMYK и наоборот неоднозначно, потому что некоторые оттенки из пространства RGB не имеют аналогов в CMYK и наоборот. Разумеется, настало время, когда у разработчиков цветовоспроизводящей техники и программного обеспечения возникла идея создания универсального языка. Чтобы ее реализовать, несколько корпораций и организаций в 1993 году объединились в Международный консорциум по цвету – International Color Consortium (ICC). Было решено ввести в программное обеспечение, поставляемое с оборудованием, словарь для перевода информации с языка устройства на универсальный язык (и обратно). Словарь этот действует по принятым ICC стандартам и представляет собой файл, названный ICC-профилем. Определение Профиль – это набор данных (как правило, файл), описывающих цветовые параметры оборудования и ряд других параметров, необходимых для того, чтобы при дальнейшей обработке файла можно было четко указать цвет того или иного пиксела. Построив с помощью системы управления цветом связь между профилями компьютера и подключенных к нему сканера и принтера, мы получаем возможность сканировать изображение, обрабатывать его на обоих компьютерах и печатать на принтере с гарантированно невысокой погрешностью. Профили оборудования – это часть технологии управления цветовоспроизведением. Они жестко внедрены в современные цифровые фотокамеры, принтеры, мониторы, сканеры, программы обработки изображений и в саму операционную систему. Профили составляются на основе измерений специальных приборов. Данные, полученные при составлении профиля, используются для компенсации несоответствий различных цветовых пространств. В последние годы в качестве стандарта принят профиль sRGB. Он установлен по умолчанию в программах фирмы Adobe, начиная с версии Photoshop 7.0, и прикрепляется к снимкам большинства массовых цифровых камер. Современные мониторы и принтеры настраиваются под этот профиль. Построение профиля – сложная процедура. Правильнее всего вызвать мастера из сервисной службы, который и построит профили, и откалибрует монитор с принтером, и даст рекомендации по обслуживанию и поддержке этих устройств. Но самые простые процедуры построения профилей можно проделать и самому. Сначала проверьте, подключен ли к системе профиль вашего монитора. Для этого выполните следующие действия (напомню, что мы работаем в среде Windows 7). 1. Щелкните правой кнопкой мыши на свободном участке Рабочего стола и в появившемся контекстном меню выберите пункт Персонализация. 2. В открывшемся окне Персонализация перейдите по ссылке Экран и в появившемся окне перейдите по ссылке Настройка параметров экрана. 3. В открывшемся окне Разрешение экрана перейдите по ссылке Дополнительные параметры. Появится диалоговое окно свойств видеосистемы. 4. В этом окне перейдите на вкладку Управление цветом, а затем нажмите кнопку Управление цветом. Появится окно Управление цветом (рис. 3.11). Рис. 3.11. Окно Управление цветом Если список Профили, сопоставляемые этому устройству пуст, значит, на компьютере не установлены цветовые профили для монитора, выбранного в раскрывающемся списке Устройство. Как правило, файлы цветовых профилей регистрируются в системе при установке драйвера устройства (монитора, принтера или сканера). Также они могут располагаться на диске с драйверами в виде отдельных файлов. Их можно добавить в таблицу, нажав кнопку Добавить. Калибруем монитор Для калибровки монитора предназначена утилита Калибровка цветов экрана (рис. 3.12). Запустить ее можно, переходя по бесчисленным ссылкам из окна Персонализация, но проще щелкнуть на кнопке Пуск, в строке Найти программы и файлы главного меню набрать команду dccw и нажать клавишу Enter. Рис. 3.12. Окно мастера калибровки экрана Нет необходимости описывать процедуру калибровки монитора с помощью данного мастера. В каждом окне вам предлагаются четкие инструкции и различные изображения, на которые нужно ориентироваться при настройке. Глава 4 Азбука фотографии 4.1. Этап 1: свет проходит через объектив 4.2. Этап 2: свет фокусируется на матрице, а камера (или фотограф) устанавливает параметры экспозиции 4.3. Экспозиция и число диафрагмы 4.4. Связь между выдержкой и диафрагмой. Экспопары 4.5. Автоматическая, полуавтоматическая и ручная установка экспозиции 4.6. Экспокоррекция 4.7. Вилка экспозамера 4.8. Этап 3: нажатие кнопки затвора и одновременное срабатывание системы ой фокусировки «Святая троица» фотографии – затвор, диафрагма и система фокусировки, эти три базовых элемента фотоаппарата с момента рождения фотографии получили множество остроумных и популярных технических решений. Чтобы правильно выбрать параметры съемки, вы должны уметь управлять своей камерой и ориентироваться в ее устройстве. Как работают эти три элемента и какую роль они играют в получении семейных, отпускных и прочих фотографий, мы рассмотрим, для наглядности обращаясь к традиционным «ручным» фотокамерам. Ведь при переходе от пленочной фотографии к цифровой ее базовые принципы ничуть не изменились: изображение объекта съемки формируется светом, пропускаемым через объектив. 4.1. Этап 1: свет проходит через объектив Перед тем как запечатлеть пейзаж, портрет, натюрморт или что-нибудь еще (все это в дальнейшем мы будем называть скучными словами «объект съемки»), фотограф ловит изображение в видоискатель. Чтобы получить фотографию этого объекта, нужно осветить фотопленку или в нашем случае ее аналог – светочувствительную матрицу – так, чтобы изображение на ней получилось резким и достаточно контрастным. Словарь Фотографы предпочитают говорить не «осветить пленку» или «осветить матрицу», а «экспонировать ее». Хороший, четкий и резкий снимок получается лишь в том случае, если матрица получила нужное количество света в течение определенного времени. Для этого свет определенным образом пропускается через систему линз – объектив. Фотограф снимает с объектива крышку – и свет через его переднюю линзу попадает в камеру. Объектив – главная и неизменная часть любого фотоаппарата: традиционного или цифрового, недорогой любительской камеры или профессиональной «зеркалки». Объектив представляет собой систему линз, фокусирующих свет так, чтобы рисуемое светом изображение на светочувствительном материале было резким и неискаженным. 4.2. Этап 2: свет фокусируется на матрице, а камера (или фотограф) устанавливает параметры экспозиции Наверное, каждый пробовал сфокусировать солнечные лучи увеличительным стеклом, чтобы добыть огонь или хотя бы выжечь рисунок. Точно так же изображение фокусируется в фотоаппарате. Именно поэтому фотоаппарат нельзя направлять на солнце. Чтобы понять, что происходит с лучом света, попавшим в объектив, обратимся к школьному курсу оптики. На рис. 4.1 схематически представлен объектив из единственной линзы. Рис. 4.1. Объектив из единственной собирающей линзы фокусирует лучи света в точке F, называемой фокусом. Расстояние от фокальной плоскости, в которой лежит эта точка, до оптического центра линзы обозначено буквой f Внимание! Распространение лучей света в оптике принято изображать слева направо. При этом в нашем случае слева (перед линзами объектива) располагаются изображаемые предметы, а справа – их изображения. Лучи света, падающие на линзу А, собираются в одной точке, то есть в фокусе этой линзы. Плоскость, в которой лежит данная точка, перпендикулярна оптической оси линзы О и называется фокальной плоскостью. А теперь несколько определений. Заучивать их, разумеется, не нужно. Они понадобятся для понимания всего, что будет изложено дальше. • Оптический центр линзы – это точка линзы, через которую лучи проходят без изменения направления. • Оптическая ось линзы (О, см. рис. 4.1) – это прямая, которая является осью сим – метрии линзы и проходит через центры кривизны ее поверхностей. На оптической оси линзы находится ее оптический центр. • Фокус линзы (F) – точка, в которой собираются лучи, освещающие линзу. Фокус собирающей линзы находится впереди, а фокус рассеивающей – позади ее оптического центра. • Фокусное расстояние (f) (Focal Length) – это расстояние между фокусом линзы и ее оптическим центром. Оно зависит от кривизны поверхности линзы и свойств материала, из которого она изготовлена. Правило Хорошая, четкая фотография получается лишь тогда, когда расстояние между объективом и матрицей находится в соответствии с расстоянием между фотографом и объектом съемки. Если такого соответствия нет, то снимок получается нерезким, размытым и про него говорят: «Изображение не в фокусе». Следовательно, при съемке объектив нужно сфокусировать, то есть настроить систему линз таким образом, чтобы изображение обрело резкость. Чтобы понять, как фокусируется объектив, обратимся к традиционному фотоаппарату. Вот в чем заключается ручная наводка на резкость: фотограф, поворачивая расположенное на объективе кольцо фокусировки, настраивает систему линз объектива так, чтобы изображение стало резким, или, другими словами, наводит на резкость. Линзы при этом перемещаются, и когда они займут определенное положение, изображение на пленке (в нашем случае – на матрице) сфокусируется, то есть примет резкие, четкие очертания. Владельцу компактной цифровой камеры нет нужды выполнять эту операцию. В массовых моделях современных камер наводка на резкость выполняется автоматически, а системы линз перемещает специальный электромотор. Фокусное расстояние и объективы Разные объективы имеют разное фокусное расстояние, то есть промежуток от оптического центра объектива до плоскости матрицы. Фокусное расстояние измеряется в миллиметрах. Главное Фокусное расстояние определяет угол обзора объектива. Именно от фокусного расстояния зависит размер объекта съемки на фотографии. Современные компактные и зеркальные камеры оснащаются одним объективом с постоянным или переменным фокусным расстоянием. У объективов с переменным фокусным расстоянием (зумом) указывается диапазон фокусных расстояний. Исходя из величины фокусного расстояния все объективы делятся на нормальные, короткофокусные (широкоугольные), длиннофокусные (телеобъективы) и объективы с переменным фокусным расстоянием. Объективы, позволяющие изменять фокусное расстояние, называются варио– или зум-объективами. С изменением фокусного расстояния меняются угол обзора объектива и перспектива. Чтобы пояснить все это, рассмотрим рис. 4.2. На нем изображены объективы с фокусными расстояниями f и f1, равноудаленные от объекта съемки. При этом фокусное расстояние f меньше, чем f1. Рис. 4.2. Изображение, полученное объективом с коротким фокусным расстоянием f (а), крупнее: такой объектив охватывает более широкую панораму, чем длиннофокусный (б) Как видно из схемы, изображение, полученное с помощью объектива с коротким фокусом, гораздо крупнее, чем получающееся у длиннофокусного объектива. Другими словами, короткофокусный объектив охватывает более широкую панораму, чем длиннофокусный, и его угол обзора значительно шире. Именно поэтому короткофокусные объективы иначе называют широкоугольными. Снимок, сделанный широкоугольным объективом, включает больше объектов, чем фотография, полученная штатным объективом с той же точки. Что происходит с изображением при изменении фокусного расстояния объектива? С увеличением фокусного расстояния угол обзора объектива сужается, а широкая панорама сокращается до небольшой области пространства. В длиннофокусных объективах удаленные предметы кажутся крупнее и ближе друг к другу. С уменьшением фокусного расстояния «угол зрения» объектива увеличивается, зона охвата кадра расширяется, а предметы на нем уменьшаются и удаляются. На рис. 4.3 два снимка одной и той же панорамы сделаны с использованием разного фокусного расстояния. а б Рис. 4.3. Фокусное расстояние определяет масштаб изображения в видоискателе: первый снимок (а) сделан широкоугольным объективом, а второй (б) – длиннофокусным Несмотря на разнообразие объективов, все они устроены и работают одинаково: фокусируют проходящие через линзы лучи света на светочувствительной пленке или, если речь идет о цифровых камерах, светочувствительной матрице (сенсоре). Кстати Объектив состоит из нескольких линз, объединенных в оптические системы. Оптических систем в объективе может быть от двух до пяти. Нормальные объективы Нормальные объективы, то есть объективы с фокусным расстоянием, примерно равным диагонали кадра, почти универсальны для всех видов съемок. Но на снимках, сделанных с расстояния менее 1,5 м, такие объективы дают большие искажения. Поэтому нормальные объективы не годятся для съемок крупным планом. Фокусное расстояние нормального (штатного) объектива для большинства 35-миллиметровых фотоаппаратов находится в пределах 45–55 мм. Угол обзора такого объектива равен 40–50° и соответствует углу зрения человека. Поэтому снимки, сделанные стандартным объективом, не отвлекают внимание искаженной или непривычной перспективой, позволяя сосредоточиться именно на сюжете и объекте съемки. Какой объектив считать широкоугольным, какой – нормальным, а какой – длиннофокусным? Смотря какая у вас камера! Таблица 4.1 поможет разобраться, какие фокусные расстояния для каких фотоаппаратов считаются малыми и большими. Таблица 4.1. Зависимость фокусного расстояния от типа камеры Широкоугольные объективы Как правило, цифровые камеры снабжены умеренно широкоугольным объективом. Такой объектив зрительно удаляет объекты съемки, поэтому в кадр попадает больше предметов. Данное свойство позволяет снимать крупные объекты – дома, деревья, целые пейзажи. Главный недостаток таких объективов станет вам ясен при взгляде на рис. 4.4 – они совершенно непригодны для съемки портретов с близкого расстояния. Способность «широкоугольников» изменять перспективу при съемке крупным планом приводит к тому, что черты лица сильно искажаются и оно становится похожим на карикатуру. Рис. 4.4. На близких расстояниях широкоугольные объективы дают значительные искажения Примечание Существуют сверхширокоугольные объективы, которые называются «рыбьим глазом». Все прямые линии, не проходящие через центр, в них искажаются и закругляются (рис. 4. 5). Стоят такие объективы довольно дорого и применяются в профессиональной фотографии. Рис. 4.5. Сверхширокоугольные объективы «рыбий глаз» искажают все прямые линии, не проходящие через центр В каких случаях бывают полезны широкоугольные объективы? • При съемке вне помещения. Обладатель «широкоугольника» захватит в видоискатель все, что ему нужно, и легко исключит из кадра все лишнее, приблизившись к объекту съемки. • Объекты, расположенные вблизи фотографа, широкоугольный объектив увеличивает, а находящиеся поодаль – уменьшает. Например, если снимать широкоугольным объективом автомобиль со стороны облицовки радиатора, то он будет казаться особенно длинным и изящным. Рука, протянутая в направлении широкоугольного объектива, кажется больше головы ее обладателя. Эти свойства «широкоугольника» позволяют увеличить глубину и объем фотографии, включив в сюжет объект на переднем плане. Но если забыть свойства объектива, приближающего и без того близкие объекты, то можно попасть впросак. При съемке объектов с параллельными вертикальными линиями (к примеру, высоких зданий) не стоит наклонять фотоаппарат вверх или вниз. Если это сделать, то вертикальные линии на снимке сольются в точку. Порой такой эффект используют, чтобы подчеркнуть, например, высоту здания или увеличить перспективу для создания более эффектной композиции. Но в общем случае превращение вертикальных линий в наклонные («завал» линий) фотографы рассматривают как ошибку (рис. 4.6). Рис. 4.6. Вертикальные линии зданий при съемке широкоугольным объективом превращаются в наклонные Длиннофокусные объективы Длиннофокусные объективы особо компактной конструкции называются телеобъективами, но в общем случае «телевиками» называют любые длиннофокусные объективы. Увеличение фокусного расстояния приближает удаленный объект съемки. Такое приближение можно использовать, к примеру, для съемок животных в дикой природе, а также тогда, когда подойти ближе к предмету съемки по тем или иным причинам невозможно. Задний план при съемке «длинным фокусом» несколько размывается, а изображение становится плоским и неглубоким. Зум-объективы Главное свойство зум-объективов, которое отличает их от всех остальных, – переменное фокусное расстояние. Узнать камеру с зум-объективом просто: такой объектив выступает за переднюю панель корпуса больше, чем у камеры, обладающей постоянным фокусным расстоянием. Кроме того, зум-объективы помечаются не одним числом, а двумя (например, 38-380 мм). Эти числа определяют диапазон фокусных расстояний. Кстати Не стоит вести съемку на крайних положениях зума – качество снимков будет совершенно неудовлетворительным. В компактных камерах применяются автофокусные зум-объективы. Они очень просты в использовании, так как не требуют фокусировки. Поэтому фотограф может посвятить все внимание сюжету кадра и выбору оптимального фокусного расстояния. Важно! Зум-объективы обладают меньшей светосилой, чем объективы с постоянным фокусным расстоянием. Следовательно, владелец камеры с мощным зум-объективом должен уделять больше внимания условиям освещения при съемке. Чтобы показать возможности зум-объектива, рассмотрим несколько фотографий, сделанных цифровым фотоаппаратом посредством зум-объектива с диапазоном фокусных расстояний 8,9-35 мм, что в эквиваленте 35-миллиметровой камеры соответствует диапазону 71,2-280 мм. Фотографии сделаны в разных положениях зум-объектива: первая (рис. 4.7, а) – в положении объектива, соответствующем эквиваленту 35 мм, вторая (рис. 4.7, б) – 135 мм, а третья (рис. 4.7, в) – 280 мм. а б в Рис. 4.7. Съемка в разных положениях зум-объектива: а – в положении объектива, соответствующем эквиваленту 35 мм, б – 135 мм, в – 280 мм Я задумал снять пейзаж. Как выбрать правильное фокусное расстояние? Задайте максимальный угол обзора, то есть выберите минимальное фокусное расстояние, и сделайте снимок. Сфотографируйте тот же вид, выбрав среднее, а затем максимальное фокусное расстояние. Крайнее положение зум-объектива дает не очень хорошие результаты, так что границу между приемлемым и неприемлемым качеством снимка лучше выяснить опытным путем. Сравните снимки и начинайте выяснять ответы на следующие вопросы. Какие искажения дает объектив? Наблюдаются ли искривление прямых линий, «завал» вертикалей? Какие из искажений можно исправить в графическом редакторе, а какие нет? Постепенно вы выясните, какие фокусные расстояния для каких объектов съемки дают наилучший результат. Зум-объективом управляют с помощью рычажка, на котором указаны буквы W и T (рис. 4.8). Что это за буквы? Буква W (Wide Angle) означает широкоугольное положение зум-объектива, а Т – длиннофокусное. Нажимая на данный рычажок, вы изменяете положение объектива. На LCD-экране при этом положение объектива отражается на индикаторе (рис. 4.9). Рис. 4.8. Рычажок для манипуляции фокусными расстояниями зум-объектива Рис. 4.9. Индикатор положения объектива выводится на монитор камеры Что такое съемка в режиме телефото? Так называют съемку зум-объективом в длиннофокусном положении. При этом удаленные объекты приближаются. Диафрагма – устройство, дозирующее свет Для получения качественного изображения светочувствительная матрица должна получить совершенно точно отмеренное количество света. Количество света и время, в течение которого этот свет освещает матрицу, регулируются очень точными механизмами, от работы которых качество фотографии зависит ничуть не меньше, чем от точной наводки на резкость. Внутри объектива среди его оптических систем располагается устройство, регулирующее количество света, проходящего через объектив. Это устройство называется диафрагмой. Диафрагма состоит из тонких лепестков, которые могут раздвигаться и сдвигаться, увеличивая или уменьшая отверстие объектива (рис. 4.10). Рис. 4.10. Так выглядит механизм диафрагмы со стороны объектива Диафрагма влияет на степень освещенности снимка: чем шире она открыта, тем светлее кадр. На фотографии слева (см. рис. 4.10) лепестки сведены так, что отверстие, через которое проникает свет, очень маленькое. Следовательно, количество света, которое пройдет через это отверстие, будет небольшим, а снимок может получиться темным (примерно как на рис. 4.11, а). Чтобы увеличить количество света, который освещает матрицу, фотограф начал изменять положение лепестков диафрагмы (рис. 4.10, справа): отверстие, которое они закрывали, увеличилось, и теперь количество света, проходящее через объектив, будет значительно больше. Снимок при этом получится гораздо светлее (рис. 4.11, б). а б Рис. 4.11. Снимок, сделанный при почти закрытой (а) и открытой (б) диафрагме Глубина резкости и диафрагма Диафрагма управляет не только количеством света, проходящим через объектив, но и глубиной резкости. Определение Расстояние между передней и задней границами резко изображаемого пространства называется глубиной резкости. Не все объекты в кадре находятся на одинаковом расстоянии от камеры. Чаще всего сюжет имеет несколько планов. На резкость камера наводится (фокусируется) лишь по одному из объектов. Поэтому важно, насколько резко на снимке получится все то, что находится дальше или ближе фотографируемого вами объекта. Важно! Глубина резкости меняется в зависимости от фокусного расстояния объектива, расстояния до объекта и величины диафрагмы. При съемке объектов, удаленных на разное расстояние, наиболее резко на снимке получится тот, на котором сфокусирован объектив. Предметы спереди и сзади этого объекта будут «расплываться» по мере удаления от точки, на которую наведен фокус. Но так как человеческое зрение несовершенно, то в определенном диапазоне расстояний на глаз они будут казаться резкими. Например, если предметы, расположенные на расстоянии от 3 до 7 метров от объектива, находятся в фокусе и выглядят на снимке достаточно резко, то говорят, что глубина резкости равна 4 метрам. На рис. 4.12 приведен пример изменения глубины резко изображаемого пространства с помощью сфотографированных с одной и той же точки полосок с нанесенными на них расстояниями в дюймах. На фотографии верхней полоски более или менее резко изображены все цифры, которые находятся к фотоаппарату ближе, чем цифра 6. На средней полоске резко изображенной видна цифра 8. А на нижней полоске зона резкости расширена до цифры 10. Рис. 4.12. Глубину резко изображаемого пространства можно изменять Чем ближе камера находится к объекту, тем меньше глубина резкости. Если на цветок перед вами уселась красивая бабочка, то, наклонившись, чтобы заснять ее, вы получите превосходное изображение этой бабочки, но вот луг и даже ближайший к вам цветок или куст могут стать частью размытого фона. Если же вы попробуете снять тот же вид с расстояния 2–4 м, то шансы на получение хорошего, резкого изображения значительно увеличатся. На рис. 4.13 первый снимок (а) сделан с расстояния менее 50 см, а чтобы сделать второй снимок (б), фотограф отошел от объекта съемки примерно на 5 м. Очевидно, что глубина резкости первой фотографии совсем невелика: и ближний, и дальний объекты изображены размыто, а в фокусе находится лишь средний объект. На втором снимке все предметы и фон изображены одинаково резко. а б Рис. 4.13. Чем ближе к объекту съемки находится камера, тем меньше глубина резкости Чем меньше фокусное расстояние объектива, тем больше размеры резко изображаемого пространства. Короткофокусные (широкоугольные) объективы имеют гораздо большую глубину резкости по сравнению со всеми остальными. Глубина резкости тем больше, чем меньше открыта диафрагма. Закрывая диафрагму, фотограф увеличивает глубину резкости. Сравните две фотографии, приведенные на рис. 4.14. Первый снимок сделан с диафрагмой f/3,9, а второй – со значением диафрагмы f/10,7 (в следующем разделе вы узнаете, что чем больше знаменатель этой дроби, тем меньше степень открытия диафрагмы и тем у же отверстие, через которое проходит свет). а б Рис. 4.14. Первый снимок (а) сделан с диафрагмой, открытой до f/3,9, и его глубина резкости ниже, чем на втором снимке (б), который сделан с прикрытой диафрагмой (f/10,7) На первом снимке, сделанном с меньшей глубиной резкости, объект съемки четко выделяется на нерезком и размытом фоне. Прикрывая диафрагму, фотографы зачастую намеренно уменьшают глубину резкости и размывают фон, чтобы выделить главный объект снимка. Но при фотографировании пейзажа или интерьера цель фотографа иная – добиться максимальной глубины резкости. Снимая с расстояния 5-10 м короткофокусным объективом и прикрыв диафрагму (до разумных пределов), можно добиться максимальной глубины резкости изображения. Для съемки разных сюжетов нужна разная глубина резкости. Фотографируя пейзаж, для хорошей фокусировки и на переднем, и на заднем плане глубину резкости увеличивают, то есть прикрывают диафрагму. Секрет Так когда же открывать диафрагму, а когда прикрывать? Есть нехитрый секрет: для большой глубины резкости – большие значения диафрагмы, для малой глубины – малые. Затвор – устройство, определяющее выдержку Количество света, который попадает на матрицу, зависит не только от размера отверстия, сквозь которое он проходит, но и от времени, в течение которого она освещается. Чтобы ограничить время освещения матрицы, применяется специальный механизм – затвор. В компактных камерах он расположен сразу за объективом. Затвор имеет два основных положения: «открыто» и «закрыто». Когда затвор открыт, свет воздействует на матрицу. Закрывая затвор, фотограф перекрывает доступ света к матрице. Затвор – это механизм, который отвечает за выдержку, то есть за время, в течение которого освещается (экспонируется) матрица (или пленка). Чувствительность матриц такова, что время их экспонирования, то есть длительность выдержки, сократилось до сотых долей секунды. Следовательно, затвор – очень точный механизм. Выдержка измеряется в долях секунды: 1/15, 1/60 и т. д. Произносится это так: «выдержка 15», «выдержка 60». Если говорят, что снимок сделан с выдержкой 125, то это означает, что свет освещал фотопленку или матрицу в течение 1/125 секунды. Чтобы понять значение выдержки, посмотрим на рис. 4.15, на котором приведены два снимка одного и того же объекта (скоростного поезда), сделанные с разными выдержками. При съемке первой фотографии значение выдержки было установлено равным 1/1000 секунды. Вторая фотография была сделана при «длинной» выдержке – 1/60 секунды. Фон остался прежним, а изображение поезда получилось размытым так, что его скорость стала видна наглядно. а б Рис. 4.15. Первая фотография (а) снята с выдержкой 1/1000 секунды, а вторая, на которой главный объект «размыт» скоростью движения (б), – с выдержкой 1/60 секунды Этот эффект фотографы используют издавна. Искусственно увеличив время открытия затвора, они получают таким образом сеть светящихся линий, летящих вдоль темной улицы, «след» взмаха руки и другие интересные эффекты. 4.3. Экспозиция и число диафрагмы Читая этот раздел, вы заметите, что понятия выдержки и диафрагмы употребляются, как правило, в паре. Объясняется это просто: выдержка и диафрагма определяют значение ключевого понятия фотографии – экспозиции. Определение Экспозицией называется количество света, воздействующего на светочувствительный материал (в нашем случае это матрица) за время его экспонирования. Интенсивность света, как нам уже известно, регулируется величиной диафрагмы, а время – продолжительностью выдержки. Количество света, проходящее через объектив, зависит от величины входного отверстия объектива, то есть от его диаметра. Главное свойство объектива – его способность пропускать свет – принято выражать величиной относительного отверстия объектива. Мы уже знаем, что относительное отверстие объектива равно отношению диаметра его входной линзы к его фокусному расстоянию. Это понятие нам нужно, чтобы численно выразить положения лепестков диафрагмы: для их описания пользуются числом, обратным относительному отверстию объектива, или диафрагменным числом объектива. Значения диафрагменных чисел можно видеть на специальной шкале оправы сменных объективов: 0,7; 1; 1,4; 2; 2,8 и т. д. (на этой шкале смежные числа отличаются в 1,41 раза). В фотоаппаратах с ручным управлением диафрагменные числа, или диафрагму, можно устанавливать с помощью специального кольца на объективе. В современных же фотоаппаратах, снабженных системами электронного управления и индикации, применяются более мелкие деления – 1/2 или даже 1/3 ступени диафрагмы. Очень часто диафрагму пишут не в виде числа (например, 8), а как дробь с буквой f (например, f/8). Если диаметр диафрагмы вдвое меньше фокусного расстояния, то говорят, что диафрагма равна f/2, а диафрагменное число равно 2. Это число часто записывают как f2, чтобы не связываться с дробями. Стандартный ряд диафрагменных чисел – геометрическая последовательность, каждый член которой больше предыдущего в 1,4 раза: f2; f2,8; f4; f5,6; f8 и т. д. Таким образом, например, переход с диафрагмы f4 на f5,6 ослабляет поток света в два раза. Чем больше диафрагменное число, тем меньше размер диафрагмы и тем меньше света попадет на светочувствительный материал. Изменением диафрагмы добиваются, во-первых, нужного усиления или ослабления потока света, а во-вторых, изменения глубины резкости. Конструкторы фотоаппаратов не всегда могут вписать значения диафрагмы в стандартный ряд диафрагменных чисел, соответствующих максимальному пропусканию света объективом. Поэтому ряд диафрагменных чисел многих объективов содержит нестандартные значения, например: 1,9; 3,2; 4,5. 4.4. Связь между выдержкой и диафрагмой. Экспопары Мы уже знаем, что экспозицию определяет сочетание выдержки и диафрагмы. Определение Любое сочетание выдержки и диафрагмы образует экспозиционную пару, или экспопару В предыдущем разделе говорилось о том, что длительность выдержки (то есть времени, в течение которого экспонируется матрица) измеряется долями секунды, а стандартные значения выдержки составляют геометрическую прогрессию (то есть ряд, в котором каждое последующее значение вдвое меньше предыдущего и вдвое больше следующего). В ряду 1, 1/2, 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250 и т. д. каждое последующее число означает сокращение времени освещения пленки. Но ведь диафрагменные числа тоже изменяются пропорционально! Все это наводит на мысль, что получить одну и ту же экспозицию можно несколькими способами, пропорционально увеличивая или уменьшая значения выдержки и диафрагмы. Иначе говоря, для получения той же экспозиции при уменьшении выдержки на одну ступень нужно открыть диафрагму на одну ступень и наоборот. Это очень удобно, так как, чтобы найти оптимальное значение экспозиции, важно правильно сочетать диафрагменное число и выдержку, то есть найти верную экспопару. Получается, что одному и тому же значению экспозиции можно подобрать несколько экспозиционных пар! Действительно, например, экспозиция с выдержкой 1/30 секунды и значением диафрагмы f8 может быть достигнута, если установить выдержку 1/60 секунды и диафрагму f5,6 или 1/120 секунды и f4 и т. д. Секрет Именно эта множественность решений открывает простор для творчества. Если фотограф хочет выделить объект на переднем плане и размыть фон, сохранив правильную экспозицию, то он может уменьшить выдержку, одновременно открыв диафрагму. При съемке движения для придания кадру динамичности фотограф может «смазать» объект, еще больше уменьшив выдержку и увеличив диафрагму. Проще говоря, связь экспозиции с выдержкой и диафрагмой похожа на старое арифметическое правило: от перемены мест сомножителей их произведение не меняется. Самым наглядным объяснением этого правила будет рис. 4.16, на котором площадь прямоугольников – это экспозиция, определяемая сторонами этих прямоугольников: диафрагмой и выдержкой. Рис. 4.16. Одно и то же значение экспозиции можно получить, пропорционально изменяя значения диафрагмы и выдержки Раз экспопара однозначно определяет экспозицию, то решение напрашивалось само собой: поставить определенные экспопары в жесткое соответствие со специфическими режимами съемки. Именно это и было сделано по мере развития автоматики и электроники. Теперь кропотливая настройка и поиск нужных значений экспозиции превращаются в задачу выбора из меню подходящего режима, то есть нужной экспопары. Владельцу автоматической камеры даже не нужно знать значения диафрагмы и выдержки – экспозиционную пару параметров (а также многое другое) камера выберет сама! Шаг изменения выдержки и диафрагмы называется экспозиционным числом, или стопом (Stop), и обозначается EV (Exposure Value). Экспозиционные числа – это условно принятый ряд вида -1, 0, 1, 2 и т. д. Каждое такое число обозначает сочетание двух факторов: освещенности объекта съемки и соответствующего ему значения выдержки и диафрагмы. Как мы теперь знаем, шкалы выдержек и диафрагм построены по принципу удвоения параметров. При переключении любой из этих шкал на следующее значение количество света, падающего на пленку, увеличивается или уменьшается вдвое. Иными словами, изменить диафрагму или выдержку на один стоп означает изменить экспозицию в два раза. Например, если изменить выдержку 1/500 на три шага (или, как еще говорят, на три стопа), то она составит 1 / 60. Получается, что переход на n стопов изменяет экспозицию в 2n раз. 4.5. Автоматическая, полуавтоматическая и ручная установка экспозиции Автоматический режим (Auto) используется для моментальной съемки «навскидку». Фотограф лишь наводит камеру на объект. При этом в некоторых моделях фотоаппаратов требуется выбрать фокусное расстояние, а в других – «приказать» камере сфокусироваться на каком-либо объекте. Далее автоматика камеры сама выбирает параметры экспозиции, а фотографу остается лишь нажать кнопку спуска затвора. Как фотографировать в автоматическом режиме? Наведите камеру на выбранный объект и найдите такое положение, при котором объект окажется в центре кадра. На экране фотоаппарата эта зона обычно помечена маркером. Нажмите кнопку спуска до половины для блокировки фокуса и параметров экспозиции. При этом в видоискателе отобразится значок автофокуса. Он подтвердит, что объект находится в фокусе. Значок автофокуса отчего-то красного цвета! Это значит, что камера не может сфокусироваться на объекте. Повторяйте предыдущие шаги до тех пор, пока значок не покажет, что фокусировка достигнута. Когда это случится, нажмите кнопку затвора до конца. После этого некоторое время будет гореть индикатор, показывающий, что изображение записывается на карту памяти. Пять главных правил съемки в автоматическом режиме 1. Ваша камера настроена так, чтобы в автоматическом режиме гарантировать хороший, резкий снимок (если только речь не идет об особых условиях съемки). 2. Лучшие фотографии получаются при естественном освещении и в открытом пространстве. 3. Чтобы главный объект получился на фотографии четким даже в тех случаях, когда он находится не в центре кадра, применяйте блокировку автофокуса. 4. Помните, что «дальнобойность» встроенной вспышки не превышает 3 м. Не пытайтесь фотографировать со вспышкой с большого расстояния! 5. Фотографируя в яркий солнечный день, а также объекты на ярком фоне, не забывайте о вспышке. Лучше всего переключить камеру в режим принудительного включения вспышки, что придаст вашим снимкам естественность и позволит лучше осветить объект. Сюжетные режимы Чтобы облегчить жизнь владельцев цифровых камер, производители фототехники догадались объединить параметры для типичных сюжетов, объектов и ситуаций съемки в так называемые сюжетные режимы настройки экспозиции. Они позволяют получать отличные снимки, не тратя времени на подбор параметров съемки. Рассмотрим эти программы подробнее. В вашей камере каких-то из них может не быть, а какие-то могут добавляться – производство не стоит на месте. Портретный режим (Portrait) создает художественно размытый фон, выделяя модель. Для этого камера выбирает малые диафрагменные числа так, чтобы фон был не в фокусе. Спортивная съемка (Sport или Action) «останавливает» объект в движении, сохраняя его в фокусе. Некоторые камеры дополняют такие кадры режимом размытия, что подчеркивает динамику. Этот режим предоставляет лишь базовые возможности съемки объектов, движущихся с большой скоростью. Для достижения лучшего результата придется устанавливать экспозицию вручную. Пейзажный режим (Landscape) подходит для съемки удаленных объектов. В этом случае камера выбирает длинную выдержку и большое диафрагменное число. Такой режим обеспечивает четкость переднего и заднего планов, а также оптимальную глубину резкости. Ночной портретный режим (Night Portrait) используется при ночной съемке для получения сбалансированного освещения переднего и заднего планов снимка. Выдержка увеличена для лучшей проработки фона имеющимся светом. Режим макросъемки (Macro, Supermacro или Close Up) применяется для фотографирования с близкого расстояния. Кроме названных, имеется множество иных вариантов: Пляж/Снег, Сумерки/Рассвет, Музей, Фейерверк, Панорама и т. д. Полуавтоматический и ручной режимы После всего прочитанного многие решат не затруднять себя установкой экспозиции и положиться на автоматику цифровой камеры. И впрямь, зачем все это? Ведь автоматика обеспечит все удобства, и, применяя автоматический режим съемки, вы с минимальными трудозатратами получите прекрасные фотографии. Но чтобы воспользоваться всеми возможностями, которые предоставляет владельцу современная цифровая камера, идеального владения искусством нажимать одну кнопку недостаточно. Полуавтоматические и ручной режимы, предусмотренные во многих массовых моделях камер, одарят вас такими богатствами, о которых нужно получить хотя бы самое общее представление! А значит, необходимо идти дальше. Этим мы и займемся – ознакомимся с традиционным способом установки экспозиции. Фотограф выбирает выдержку, а затем поворачивает диафрагменное кольцо на объективе до тех пор, пока устройство не покажет, что экспозиция установлена правильно. Но мы уже знаем, что можно сделать и наоборот: выбрать диафрагму и поворачивать головку установки выдержки до установления нужной экспозиции. Современные фотокамеры, в том числе цифровые, позволяют фотографу выбрать одно из значений экспозиции – диафрагму или выдержку, – а подбор второго значения возлагается на автоматику. • Если фотоаппарат позволяет устанавливать значение диафрагмы вручную, а экспопару, то есть выдержку, подбирает сам, то эта схема называется режимом приоритета диафрагмы (Aperture Priority). В технических характеристиках камер такое свойство обозначается буквой А или буквами АР. Если вы хотите получить снимок с максимальной глубиной резкости, следует предпочесть этот режим. • Фотограф может самостоятельно выставить выдержку, а значение диафрагмы назначает автоматика камеры. Такая схема называется приоритетом выдержки (Shutter Priority). Приоритет выдержки обозначается S или SP. Этот режим очень полезен при съемке движущихся объектов и при необходимости контролировать степень размытия изображения съемкой на «длинных» выдержках. • Полное ручное управление (Manual) параметрами экспозиции присутствует и в относительно дорогих профессиональных или полупрофессиональных фотоаппаратах, и в тех, которые относятся к камерам потребительского класса. В этом режиме экспозиционная автоматика камеры полностью отключена. Отключена и система автофокуса. А теперь посмотрите, есть ли на вашей камере переключатели этих творческих режимов. Возможно, данные режимы вызываются из меню? 4.6. Экспокоррекция Иногда фотограф должен «подсказать» камере лучший путь выбора параметров съемки. Ведь в жизни могут возникнуть нестандартные ситуации, вроде перечисленных ниже. • Объект съемки очень сильно освещен или затемнен, то есть он значительно отличается от среднего серого света, что может сбить с толку экспонометр. • В кадре одновременно оказались и слишком яркие объекты, и находящиеся в тени. Здесь придется выбрать главное и пожертвовать второстепенным: либо допустить, что все тени будут черными, либо не передавать оттенки светлого. • Вручную параметры экспозиции изменяют и в целях достижения художественного эффекта. Например, силуэт человека на фоне окна будет выглядеть очень эффектно, если часть композиции передать черно-белыми тонами. Во всех этих случаях фотограф должен соответствующим образом сдвинуть экспозицию в нужную сторону. Изменение параметров экспозиции, когда фотограф берет часть управления камерой на себя, называется экспокоррекцией. Вводя поправки экспозиции, он изменяет значения диафрагмы и выдержки по сравнению с теми, которые рекомендует экспонометр. Современные компактные камеры позволяют вводить экспокоррекцию ступенями в 1, 1/2 и 1/3 EV, а некоторые профессиональные камеры делают это даже точнее. Данная функция имитирует творческие режимы приоритета диафрагмы или резкости и, комбинируя значения этих параметров, разрешает фотографу самостоятельно увеличивать или уменьшать яркость изображения. Как поправка экспозиции влияет на экспозиционные параметры? Ответ можно найти в табл. 4.2. Таблица 4.2. Зависимость экспозиционных параметров от поправки экспозиции На рис. 4.17, а приведен снимок старинного замка, сделанный в яркий солнечный день. Очевидно, что изображение получилось пересвеченным и слишком контрастным. Следующие снимки фотограф сделал, введя поправку экспозиции сначала -2 EV (левая часть снимка б), а затем -1 EV (правая часть снимка б). Результат очевиден: контраст освещенной и затененной областей исчез, а интересовавший фотографа объект получился на правом снимке четче и резче. а б Рис. 4.17. Первая фотография, сделанная в автоматическом режиме, пересвечена и содержит много контрастов (а). На втором снимке слева – тот же вид, сфотографированный с поправкой экспозиции -2 EV, справа – с поправкой экспозиции -1 EV (б) Различают положительную и отрицательную экспокоррекцию. • Если фотограф увеличивает выдержку или уменьшает диафрагму, то это положительная экспокоррекция. К ней прибегают, если в кадре преобладают белые и пастельные тона, а также если съемка ведется против света или на фоне зари. • Если фотограф увеличивает диафрагму или уменьшает выдержку, то говорят, что введена отрицательная экспокоррекция. Ее вводят, если съемка ведется на очень темном фоне, а также если в кадре преобладают тени или темно-зеленые тона. В каких случаях не обойтись без коррекции экспозиции? Есть три случая, когда алгоритм экспозамера просто не работает и фотограф, оценив кадр, должен ввести поправку экспозиции. • Большую часть кадра занимают очень светлые или очень темные объекты (например, зимой зачастую снег, снятый без поправки экспокоррекции, получается не белым, а серым). В этом случае при съемке светлых объектов экспозицию увеличивают (вводят положительную поправку), а если в кадре доминируют темные объекты, то экспозицию уменьшают (вводят поправку со знаком «минус»). • Объекты в кадре имеют большой разброс по яркости (в кадре есть источники света или глубокие, почти черные тени). • Если в художественных целях нужно передать часть композиции в виде белых или черных тонов (например, черную фигуру на белом фоне). Как вводят поправку экспозиции? В камерах, где предусмотрена экспокоррекция, ее можно вводить следующим образом. • С помощью выводимого на дисплей меню. • Изменением значения ISO (светочувствительности матрицы) в нужную сторону. При этом положительная экспокоррекция достигается увеличением чувствительности матрицы, а отрицательная – уменьшением. • Изменением выдержки и диафрагмы вручную. 4.7. Вилка экспозамера Правильную экспозицию, как нам уже известно, определяют параметры выдержки и диафрагмы. Но порой у фотографа возникают сомнения: не слишком ли ярким или, наоборот, темным получится снимок? Особенно много сомнений появляется при съемке объектов с сильными перепадами контрастов и яркостей. Случаи, когда можно прийти к однозначному решению, крайне редки. Чтобы не потерять ценный кадр, фотографы предпочитают снять два, три, а то и больше дублей с разными параметрами экспозиции. Передержанные и недодержанные снимки делают с шагом в одну, пол– или треть ступени экспозиции, как бы «беря в вилку» основной экспозиционный параметр. Этот метод так и называется – вилка. В характеристиках фотокамер такой режим обозначается буквами АЕВ. В использовании режима автовилки вам поможет современная автоматика цифровой камеры. Чтобы использовать автоматический режим вилки (брекетинг), фотограф в меню (рис. 4.18) выбирает шаг экспозиции и делает серию последовательных снимков. Обычно такая серия состоит из трех снимков, но их может быть пять и даже семь. Так повышается вероятность получения хорошего снимка даже в тех ситуациях, когда нет времени возиться с подбором и установкой параметров. Рис. 4.18. Выбор шага автовилки в меню Bracketing (Брекетинг) Как получить снимки в режиме автовилки? 1. Войдите в соответствующее меню вашей камеры и выберите режим протяжки, который называется АЕВ или Bracketing. 2. Установите шаг экспокоррекции: начать можно с ±0,3 EV (см. рис. 4.18). Большинство камер, в которых предусмотрен режим автовилки, позволяет увеличивать или уменьшать шаг поправки. 3. Зафиксируйте фокус на выбранном вами объекте и скомпонуйте кадр. 4. Сделайте последовательно три или пять снимков. Для этого нужно нажать кнопку затвора и удерживать ее, пока камера не сделает всю серию снимков. В режиме брекетинга снимки делаются в такой последовательности: нормальная экспозиция, недостаточная экспозиция, избыточная экспозиция. Чем больше кадров в серии, тем большее количество установок экспозиции будет использовано. На рис. 4.19 представлена серия фотографий игрушки на окне, сделанных в режиме брекетинга с поправкой экспозиции от -0,7 до +0,7 EV. Рис. 4.19. Серия снимков, сделанных в режиме брекетинга с различными поправками экспозиции 4.8. Этап 3: нажатие кнопки затвора и одновременное срабатывание системы автоматической фокусировки Режимы протяжки Цифровым камерам (правда, не всем) доступно несколько режимов съемки, аналогичных тем, которые в традиционной фотографии называются режимами протяжки фотопленки. Правда, пленки в вашей цифровой камере нет, и в дальнейшем режимом протяжки мы будем называть ее способность делать один, несколько или целую серию снимков. • Single (Однокадровая протяжка). Здесь пояснения не требуются. Нажимаете кнопку затвора – получаете картинку. • Continuous (Непрерывная протяжка). С помощью этого режима можно снять несколько кадров подряд. Вариацией данного режима серийной съемки является Progressive (Прогрессивный), который обеспечивает высокоскоростную съемку. В характеристиках камеры обычно указывается, сколько кадров в секунду можно снять в этом режиме и сколько последних кадров будет записано. В прогрессивном режиме вы сможете во время съемки видеть на дисплее «живое» изображение. • Self-Timer (Автоспуск). Позволяет задержать время спуска затвора. Установили камеру на штатив, задали в настройках автоспуск, выбрали кадр, сфокусировались, нажали кнопку затвора до конца – а теперь бегом под «глаз» объектива, чтобы получить собственный портрет. • Bracketing (Брекетинг). Используется для съемки серии кадров с разными параметрами экспозиции. Нажимать кнопки вы уже умеете, правда? А вот о системах фокусировки придется поговорить подробнее. Фокусировка Одно из двух: объектив либо фокусируется автоматически, либо на фокус наводит сам фотограф. В любом случае в процессе фокусировки линзы объектива приходят в движение и занимают такое положение, при котором лучи света, проходящие через объектив, сфокусируются на плоскости матрицы. Самые дешевые камеры снабжены простым объективом, который установлен на «бесконечность» и не умеет фокусироваться, так как в нем нет движущихся элементов. Объективы таких фотоаппаратов имеют маркировку FF (одни расшифровывают эти буквы как Focus Free, другие – как Fix Focus). С помощью камеры без автофокуса можно делать неплохие фотографии. Но следует иметь в виду, что при съемке такими объективами более или менее четкими на снимках получаются лишь те объекты, которые находятся на расстоянии от 3 до 15 м. Все современные цифровые фотоаппараты имеют систему автоматической фокусировки. В характеристиках камеры эта система обозначается маркировкой AF (AutoFocus). Объективы, оборудованные автофокусом, гораздо лучше объективов с фиксированным фокусом, так как самостоятельно определяют расстояние от камеры до объекта съемки и фокусируются на нем. Фотографии при этом получаются намного резче и лучше, ведь автоматическая фокусировка позволяет исключить грубые ошибки при наводке на резкость, а фотоэлементы большой чувствительности дают возможность камере фокусироваться даже в условиях очень слабой освещенности. Как система автоматической фокусировки наводит камеру на резкость? Это делается посредством измерения расстояния до объекта съемки. Секрет Объектив камеры фокусируется на той части изображения в окне видоискателя, на которой находится зона фокусировки в момент, когда фотограф нажимает кнопку спуска. Режимы фокусировки Для упрощения работы фотографа расстояния, измеряемые системами автоматической фокусировки, объединены в ступени, или шаги (Stops). К примеру, в недорогих камерах с несложным объективом имеется, как правило, трехступенчатый автофокус, три настройки которого позволяют снимать на расстояниях 0,6–1 м (широкоугольное положение объектива), 1–3 м и от 3 м до «бесконечности» (режим телефото). Первая ступень позволяет снимать крупные планы, вторая – портреты, а третья – все остальное, вплоть до ландшафтов. Начинающему фотографу этого вполне достаточно. Два из этих режимов – «бесконечность» и макросъемку – имеет смысл рассмотреть подробнее. • При установке режима фокусировки на «бесконечность» система автоматической фокусировки отключается, а камера фокусируется на максимально большое расстояние. Этот режим используется при фотографировании пейзажей или для съемки через стекло. Вспышку при этом нужно отключать (в случае если это не делается автоматически), так как ее света для освещения удаленного объекта в любом случае не хватит, а при съемке через стекло она может дать отблеск. Режим фокусировки на «бесконечность» обозначается на управляющих органах фотоаппарата стилизованным изображением гор или значком бесконечности (да). • Режим макросъемки позволяет фотографу снимать крупные планы близко расположенных предметов (от 40–60 см до «супермакро» – 2–5 см). Фотографии при этом получаются достаточно резкими и выглядят очень необычно: знакомые вещи, снятые крупным планом, приобретают на снимке совершенно новый вид. На управляющих органах фотоаппарата этот режим обозначают стилизованным изображением цветка или словом Macro. В режиме макросъемки камере требуется немало времени, чтобы сфокусироваться, так как фокусное расстояние будет изменяться до тех пор, пока изображение не получится достаточно четким. Но если камера поддерживает режим Macro, то времени на фокусировку уйдет сравнительно немного. В режиме ручной фокусировки (Manual Focus) фотограф наводит камеру на резкость самостоятельно, без помощи автоматики. При этом в видоискателе или на мониторе появляется линейка, на которой фотограф с помощью джойстика или контроллера указывает примерное расстояние до объекта. Блокировка автофокуса Если в поле зрения камеры находится несколько объектов, то как ей распознать, какой из них интересует фотографа? Чтобы подсказать камере, на чем она должна сфокусироваться, существует функция так называемого запирания (блокировки) автофокуса (Autofocus Lock, AF-L). Блокируя фокус, фотограф принудительно фокусирует камеру на нужном объекте таким образом, что фокус сохранится до тех пор, пока не будет сделан снимок. После того как фокус заблокирован, можно изменить компоновку кадра. Вот несколько типичных ситуаций, требующих применения блокировки автофокуса: • очень темный объект съемки; • объект расположен в тени, а фотограф – на ярком солнце; • при съемке низкоконтрастной сцены (например, человека в одежде того же цвета, что и фон); • если в кадре множество повторяющихся структур: опоры ограды, многократные отражения и т. д.; • в кадре имеется один или несколько источников света. Во всех этих случаях вы должны подсказать камере, на чем ей фокусироваться. Чтобы это сделать, наведите видоискатель на другой объект, который находится на том же расстоянии и освещен точно так же, как ваш объект. А затем… 1. Нужный объект фотограф сначала располагает в центре кадра так, чтобы маркеры видоискателя указывали прямо на него. 2. Совместив центр кадра с объектом съемки, фотограф слегка нажимает кнопку спуска (примерно до половины рабочего хода). Камера при этом запоминает измеренное расстояние до срабатывания затвора. 3. Теперь нужно выждать, чтобы светодиод, указывающий на правильность установки фокуса, перестал мигать. Это означает, что камера сфокусировалась на объекте и фокус заперт. 4. Теперь, удерживая кнопку затвора нажатой наполовину, фотограф компонует кадр по собственному вкусу. 5. Фотограф нажимает кнопку затвора до конца – и автофокус срабатывает. Насколько точно срабатывает функция блокировки автофокуса, вы можете судить по фотографиям на рис. 4.20. Первый снимок фотограф сделал, указав с помощью автофокуса камере, что главным объектом съемки является дальняя фигурка, а вторая фотография получена с автофокусом, заблокированным на ближней статуэтке. а б Рис. 4.20. Снимая первый кадр (а), фотограф заблокировал фокус на дальней фигурке, указав таким образом камере, что является главным объектом съемки. Второй снимок (б) получен с автофокусом, заблокированным на ближней фигурке Если камере не удается сфокусироваться и, несмотря на все усилия фотографа, светодиод мерцает, никак не желая загораться ровным светом, то дело, скорее всего, в том, что объект съемки находится слишком близко. Отпустите кнопку затвора, отступите на несколько шагов и проделайте все сначала. Внимание! Режим блокировки автофокуса применяется для съемки неподвижных объектов. Если использовать этот режим при съемке движущихся объектов, то снимок получится размытым. Ошибки автофокуса и как их избежать Камера с единственным датчиком в режиме точечного замера может растеряться. К примеру, если в кадре беседуют два или три человека, датчик может сфокусироваться на промежутке между ними. При этом люди на снимке «расплывутся», а фон, наоборот, получится резким. Или, к примеру, на фотографии сидящего за столом человека стол выйдет резким, а человек окажется не в фокусе. В этом случае следует навести камеру на одного человека, воспользоваться функцией блокировки фокуса (и дать камере запомнить расстояние до объекта съемки), а затем выстроить кадр. Случается, что камера долгое время не может сфокусироваться, так как в кадре мало контрастов. Так бывает, если, например, объект и фон мало различаются по цвету и освещенности. В этом случае поступайте так же, как описано выше: наведите фотоаппарат на другой объект на том же расстоянии, заблокируйте автофокус, переведите камеру на нужный объект и снимайте. Не стоит наводить камеру на яркие блики – очень яркие объекты могут пересилить инфракрасный сигнал, что приведет к ошибке автофокуса. Не стоит наводиться и по очень темным, тусклым предметам и поверхностям, так как они, подобно «черным дырам», могут попросту поглотить инфракрасный луч. При слабом освещении датчику расстояния требуется больше времени для наведения на объект. Особенно много времени для автоматической наводки на резкость затрачивает малосветосильный объектив. Дайте вашей камере больше времени, чтобы сообразить, на чем ей фокусироваться. Инфракрасный луч отражается от стеклянной поверхности. Поэтому компактные камеры часто допускают ошибки при съемке через стекло (из окна автомобиля или поезда). В этом случае будет полезно вообще отключить систему автофокуса и наводить на резкость вручную. Если такой возможности нет, то следует наводить камеру на «бесконечность». Иначе система сфокусируется не на виде за окном, а на стекле. Система автоматической фокусировки может «сбиться с толку», если навести видоискатель на повторяющиеся структуры: решетку ограды, переплеты окна и т. д. Глава 5 Техника съемки 5.1. Главный секрет – избегать типичных ошибок 5.2. Учимся двухмерному видению 5.3. Композиция кадра 5.4. Кадрирование 5.5. Освещение 5.6. Правильное использование вспышки 5.7. Съемка движения 5.8. Макросъемка 5.9. Фотографа без штатива не бывает И любительская съемка, и карьера фотографа-профессионала вот уже более 150 лет начинаются с одного и того же. Прежде всего нужно выбрать объект съемки и постараться понять, как установить верное фокусное расстояние. Ничего хитрого здесь нет, и к тому же всегда можно положиться на помощь автоматики вашей камеры. Выбрав кадр и указав фотоаппарату нужное расстояние, смело нажимайте кнопку спуска затвора – остальное за вас сделает камера. У вас есть компактный фотоаппарат – и вовсе не важно, какой он модели и сколько в нем настроек, «примочек» и хитростей. У вас есть глаза. Этого достаточно! Когда возможно, пользуйтесь автофокусом и программным режимом и помните: ничто не должно отвлекать вас от главного. А главное – это делать интересные фотографии, а не умение разбираться в технических тонкостях. Важно! Главное, что нужно усвоить с первых минут использования цифровой камеры в автоматическом режиме, – никогда не торопиться бездумно нажимать кнопку спуска затвора. Обычно цифровая съемка происходит в два приема: сначала нужно слегка нажать кнопку затвора, чтобы дать возможность отработать автоматике по определению фокуса, баланса белого и экспозиции (после чего во многих аппаратах загорается зеленый индикатор готовности к съемке), а уж затем нажимать ее до конца. Помните, что большинство нерезких любительских снимков как раз и объясняются поспешностью начинающих фотографов, пренебрегающих этим элементарным правилом. Пробуйте, ошибайтесь, пытайтесь выразить себя. В конце концов, для технических проблем есть специалисты, да и в Интернете в случае чего наверняка найдутся нужные вам сведения. Фотографируя много и часто (это первое условие того, как научиться делать хорошие, интересные снимки), вы постепенно поймете, как достичь желаемого результата. Но не лучше ли сэкономить время и поучиться на чужих ошибках? 5.1. Главный секрет – избегать типичных ошибок Первая проблема цифровой съемки и первое ее отличие от съемки традиционным фотоаппаратом заключается в том, что матрица менее чувствительна, чем фотопленка. Поэтому регистрация цифрового изображения происходит гораздо медленнее, чем в традиционных фотоаппаратах. Чем физический размер матрицы меньше, тем меньше света она улавливает и тем больше вероятность получения недодержанных (недоэкспонированных) снимков. Данный недостаток камера компенсирует увеличением экспозиции, что еще больше замедляет регистрацию изображения и порождает проблемы фокусировки. Все это сказывается на качестве снимков. Если есть сомнения, справится ли камера с экспозицией, то снимайте с компенсацией экспозиции или используйте автовилку. Если освещение кажется вам недостаточным, пользуйтесь заполняющей вспышкой. Для этого иной раз, если нет возможности включить вспышку принудительно, придется «обмануть» камеру: сместите центр кадра на более темную область, чтобы камера замерила экспозицию по этой точке. Слегка нажмите кнопку затвора (при этом камера зафиксирует экспозицию) и, удерживая ее, сдвиньте фотоаппарат в нужное положение. Затем нажмите кнопку затвора до конца. Вторая проблема связана с лагом затвора. Так называют время от того момента, как камера сфокусировалась и фотограф нажал кнопку спуска, до момента, когда будет сделан снимок. Такая задержка срабатывания затвора есть практически у всех камер, исключая модели со свободным фокусом (Focus Free). Поэтому для того, чтобы камера произвела все необходимые настройки и была готова сделать снимок, вы должны удерживать кнопку спуска. Лучший способ понять, сколько времени нужно вашей камере, чтобы сделать хороший снимок, – постоянная фотографическая практика. Фотографируя много и часто, вы привыкаете к своей камере, а она – к вам. «Шевеленка» Если снимок, сделанный исправной камерой с правильной экспозицией в прекрасный солнечный день, получился нерезким и размытым, то виноваты в этом незаметные, не ощущаемые человеком произвольные движения камеры, или, как говорят фотографы, «шевеленка». Как появляется «шевеленка»? Если, когда открыт затвор, изображение или фотоаппарат хоть ненамного сместятся, то сдвинется и проекция изображения на матрицу. На отпечатке такое изображение получится нерезким, смазанным. Руки человека постоянно совершают микродвижения, которые настолько мелкие, что мы их даже не замечаем. Но их тут же улавливает точная оптика фотокамеры. Важно! Матрица цифровой камеры фиксирует изображение намного медленнее, чем фотопленка. Следовательно, проблема «шевеленки» для цифрового фотографа глубже и значимее, чем для «традиционного». Причины вибрации камеры Посмотрим, отчего камера может дрогнуть в руках фотографа. • Фотоаппарат может дрогнуть от случайного порыва ветра. • Кнопка спуска была нажата резко, рывком. • Фотограф мог стоять на вибрирующем основании, например на палубе судна. Такое может случиться даже на твердой, казалось бы, земле, если рядом с вами отбойными молотками вскрывают асфальт. Или на виадуке, под которым проезжают тяжелогруженые машины либо поезд. • Вибрации создает сам механизм камеры: к примеру, сервомоторы, которые двигают зум-объектив, в зеркальных камерах – зеркало, сильно хлопающее перед срабатыванием затвора, да и сам затвор. Взаимно накладываясь, все эти факторы вызывают дрожание камеры. Существует еще множество причин, которые ведут к тому, что фотография сильно теряет в качестве или оказывается никуда не годной. Но причина номер один, приводящая к «шевеленке» и порче фотографий, – это, разумеется, отсутствие штатива. Как победить «шевеленку» Основное оружие фотографа – все тот же старый добрый штатив. «Обычный» фотограф при съемке «с рук» смазывает кадр на выдержке 1/60 и даже 1/125 секунды. На отпечатках стандартного размера 10 х 15 см «шевеленка» может быть незаметной, но попробуйте увеличить ваш снимок – тут-то она и проявится во всей красе. Следовательно, если вы рассчитываете делать отпечаток большого формата, то штатив вам обязательно нужен. Бороться с «шевеленкой» поможет даже самый простенький монопод. Даже если под рукой не оказалось штатива, камеру можно опереть на дерево, сумку, камень или ограду. Чтобы исключить даже малейшую вибрацию камеры, воспользуйтесь таймером автоспуска или тросиком дистанционного спуска. Если же нет ни штатива, ни опоры, то придется обойтись съемкой на коротких выдержках. Но первым делом убедитесь в том, что вы крепко держите фотоаппарат в руках и плавно нажимаете спусковую кнопку. • Установить короткую выдержку можно вручную, назначив камере режим приоритета выдержки (Shutter Priority) и выбрав значение выдержки меньше 1/250. Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/uriy-gurskiy/cifrovaya-fotografiya-truki-i-effekty/) на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.