Оценить:
 Рейтинг: 0

Биохимия метаболизма. Учебное пособие

Год написания книги
2016
<< 1 ... 7 8 9 10 11
На страницу:
11 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля
окисляется подвижным цитохромом с, также содержащим ион железа, который восстанавливается до положения Fe

.

Цитохром с мигрирует к последнему комплексу IV (цитохромоксидазе). Взаимодействуя с цитохромоксидазой цитохром с окисляется ионом меди в комплексе Cu

. В результате ион железа в цитохроме с окисляется от Fe

в Fe

а ион меди в Cu

восстанавливается Cu

в Cu

. В свою очередь комплекс окисляется ионом железа в геме а. А ион железа в составе гема а окисляется ионом железа в геме а

, который востанавливается.

Восстановленный ион железа в геме а

окисляется ионом меди в комплексе Cu

. Ион меди в этом в этом комплексе восстанавливается, а затем окисляется кислородом, параллельно присоединяя четыре протона, с образованием двух молекул воды.

Таким образом происходит перенос электронов от NADH к кислороду, то есть потока электронов или цепи последовательных окислительно-восстановительных реакций, где почти каждая молекула является акцептором электронов в предшествующей реакции и донором в последующей.

Как было рассмотрено выше, в ходе окислительно-восстановительных реакций также выделяется и поглощается энергия, в начальных этапах исследований считалось, что выделившаяся энергия затрачивается на синтез некоего макроэргического соединения, которое, гидролизуясь, дает энергию для фосфорилирования АДФ и образования АТФ. Но дальнейшие исследования показали, что на самом деле никакого соединения нет. А все экспериментальные исследования подтвердили гипотезу, а затем теорию предложенную в 1961 году Питером Митчеллом.

Хемиосмотическая гипотеза Митчелла

Митчелл предположил, что сопряжение переноса электронов и синтеза АТФ обеспечивается протонным градиентом, а не высокоэнергетическим ковалентным промежуточным продуктом или активированным белком. Согласно этой модели, перенос электронов по дыхательной цепи приводит к выбросу протонов из матрикса на цитоплазматическую сторону внутренней митохондриальной мембраны, где, таким образом, возрастает концентрация ионов Н

. В результате происходит генерирование мембранного потенциала с положительным зарядом на цитоплазматической стороне мембраны.

Гипотеза Митчелла о сопряжении окисления и фосфорилирования протонным градиентом получила к настоящему времени множество подтверждений.

1. Согласно Митчеллу, первичным событием в окислительном фосфорилировании является транслокация протонов (Н

) на наружную сторону сопрягающей мембраны (внутренней митохондриальной мембраны), осуществляемая за счет процесса окисления в дыхательной цепи. При этом предполагается, что мембрана непроницаема для ионов вообще, особенно для протонов, которые накапливаются на наружной стороне мембраны, создавая по обе стороны мембраны разность электрохимических потенциалов (??н). Она складывается из химического потенциала (разность рН) и электрического потенциала.

Разность электрохимических потенциалов обеспечивает действие локализованной в мембране АТФ-синтазы (или обращение процесса, катализируемого локализованной в мембране АТФ-гидролазой), которая в присутствии Ф

-+ AДФ синтезирует ATФ. Таким образом, нет необходимости в высокоэнергетическом промежуточном соединении, общем для процессов окисления и фосфорилирования, как это постулирует химическая гипотеза.

Протонный градиент через внутреннюю митохондриальную мембрану создается во время переноса электронов. рН с наружной стороны на 1,4 единицы ниже, чем с внутренней, и мембранный потенциал составляет 0,14 В, причем наружная сторона несет положительный заряд. Общий электрохимический потенциал ?р (в вольтах) складывается из мембранного потенциала (??) и градиента концентрации ионов Н

(?рН). В приведенном ниже уравнении R-газовая постоянная, Т – абсолютная температура, F- число Фарадея.

?р = ?? – RT/F*?рН

как видно из уравнения в него входят два компонента электрический (??) и химический (RT/F*?рН). Электрический компонент связан с запасанием энергии, в данном случае наблюдается следующая картина:, за счет переноса протонов, водный раствор межмембранного пространства заряжен положительно, а водная часть матрикса митохондрии наоборот отрицательно, а мембрана за счет гидрофобного билипидного слоя выступает в роли прослойки из диэлектрика (это похоже на две заряженные пластины, разделенные слоем диэлектрика – а это уже конденсатор). В случае разницы в концентрациях протонов между двумя указанными выше компартментами – это тоже форма запасания энергии. Известно, что на создание градиентов затачивается энергия АТФ, например работа К/Na-АТФ-азы. При подстановке результатов, полученных при измерении, в уравнение можно получить результаты приведенные ниже.

?р = ?? – RT/F*?рН = ?? – 0,06?рН = 0,14 – 0,06 (– 1,4) – 0,224 В.

Эта общая протонодвижущая сила в 0,224 В соответствует свободной энергии 5,2 ккал в расчете на 1 моль протонов. Следовательно для синтеза одного моля АТФ необходим перенос 2 моль протонов.

2. При создании градиента рН в митохондриях или хлоропластах в них происходит синтез АТР в отсутствие переноса электронов.

3. Белок пурпурных мембран галобактерий при освещении перекачивает протоны. Синтетические пузырьки, содержащие этот бактериальный белок и очищенную АТР-азу из митохондрий сердца крупного рогатого скота, синтезируют АТФ при освещении. В этом опыте белок пурпурных мембран заменяет дыхательную цепь; следовательно, дыхательная цепь и АТФ-аза – биохимически отдельные системы, связываемые только протонным градиентом.

4. И дыхательная цепь, и АТФ-аза имеют векторную организацию во внутренней митохондриальной мембране.

5. Для окислительного фосфорилирования существенное значение имеет замкнутость компартментов. В растворимых препаратах или в мембранных фрагментах, лишенных хорошо отграниченных внутренних и внешних компартментов, не происходит синтеза АТФ, сопряженного с переносом электронов.

6. Вещества, переносящие протоны через внутреннюю митохондриальную мембрану, разрушают протонный градиент и таким образом вызывают разобщение окисления и фосфорилирования.

7. Компоненты дыхательной цепи уложены в мембране упорядоченно, «бок о бок», поперек мембраны, как предусматривается хемиосмотической теорией.

Второй важный факт это точки переноса протонов, или точки генерации протонного градиента, так как естественно, что в каждой реакции генерация не происходит. Следовательно важным моментом является определение количества и положения точек генерации протоннного градиента.

Механизмы генерации протонного градиента

Согласно хемиосмотической теории энергия окислительно-восстановительных реакций тратится на перенос протонов из матрикса митохондрии в межмембанное простанство. Но не все реакции в электронтранспортной цепи вызывают перенос протонов. Эти реакции выявлялись несколькими методами.

1. Соотношение Р/О при окислении нескольких субстратов.

В данном случае изучают соотношение фосфата, перешедшего в состав органичеких соединений к поглощенному кислороду. Для этого измеряют концентрацию свободного фосфата в среде с митохондириями до добавления субстрата, а затем после. Полученная разность концентраций является количеством фосфата, который перешел из свободного в связанное состояние, то есть был затрачен на синтез АТФ из АДФ и фосфата. Второй параметр – это поглощенный кислород. Измеряем концентрацию кислорода в начале и в конце опыта, разность равна количеству кислорода превратившемуся в воду в ходе работы электронтранспортной цепи. Делим разность концентраций свободного фосфата в среде на разность содержания кислорода и получаем соотношение P/O. Это значение различается для разных субстратов добавленных в оытную смесь с митхондриями.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 ... 7 8 9 10 11
На страницу:
11 из 11

Другие электронные книги автора Е. А. Бессолицына