Оценить:
 Рейтинг: 0

От атомов к древу: Введение в современную науку о жизни

Серия
Год написания книги
2017
Теги
<< 1 2 3 4 5 6 7 8 9 10 >>
На страницу:
5 из 10
Настройки чтения
Размер шрифта
Высота строк
Поля
Мир кислот

Следующий интересный класс веществ – карбоновые кислоты (см. рис. 1.7). Это соединения, в состав которых входит группа – CO – OH (она называется карбоксильной). Любая карбоновая кислота по общему виду формулы похожа на альдегид, но отличается от него “лишним” атомом кислорода, который и превращает альдегидную группу (–CO – H) в карбоксильную (–CO – O–H). Общая формула карбоновой кислоты: R – COOH, где R – любая углеводородная цепочка или просто атом водорода.

Простейшая карбоновая кислота – муравьиная (HCOOH). Следующая по сложности – уксусная (CH

COOH), затем – пропионовая (C

H

COOH), масляная (C

H

COOH) и т. д. Бывают и гораздо более экзотично выглядящие карбоновые кислоты: например, щавелевая, молекула которой представляет собой две карбоксильные группы, соединенные встык (HOOC–COOH). Она действительно есть в щавеле, а также в ревене и некоторых других растениях. Или бензойная кислота, имеющая в качестве радикала ароматическое ядро (C

H

COOH). Она тоже содержится во многих растениях, например в бруснике и клюкве, а еще служит широко распространенным консервантом (пищевая добавка E210).

Более того, молекула карбоновой кислоты вполне может включать в себя и другие группы, кроме карбоксильной. Например, в некоторых кислотах помимо карбоксильных групп есть гидроксильные (см. рис. 1.8). Такие соединения, по определению, являются одновременно кислотами и спиртами. Их называют спиртокислотами или (чаще) оксикислотами. Именно к этому классу относится важный промежуточный продукт нашего обмена веществ – молочная кислота, молекула которой включает три атома углерода, одну карбоксильную группу и одну гидроксильную (CH

–CHOH – COOH). Винная кислота, химию которой в свое время изучал великий Луи Пастер, устроена чуть сложнее: четыре атома углерода, две карбоксильные группы и две гидроксильные (HOOC–CHOH – CHOH – COOH). Она действительно есть в вине, а иногда добавляется и в еду, например в кондитерские изделия (пищевая добавка Е334). Заметим, что пугаться таких добавок не стоит: очень часто они, как в данном случае, представляют собой безобидные вещества, с тем же успехом изобилующие в самых что ни на есть натуральных продуктах. Винной кислоты, например, много в винограде и яблоках.

Бывают и такие кислоты, которые одновременно являются альдегидами или кетонами. Тут достаточно одного примера: пировиноградная кислота – простейшая кетокислота с формулой CH

–CO – COOH. Эта молекула тоже играет огромную роль в нашем обмене веществ (см. главу 11).

И еще несколько слов о спиртах. Карбоновая кислота и спирт могут вступить между собой в реакцию, при которой от карбоксильной группы отщепляется – OH, а от спиртовой – H. Эти отщепленные фрагменты тут же образуют воду (формула которой H – O–H или H

O). А остатки кислоты и спирта соединяются в сложный эфир – молекулу с общей формулой R

–CO – O–R

. Надо учитывать, что сложные эфиры и уже знакомые нам простые эфиры – это совершенно разные классы соединений, которые ни в коем случае нельзя путать. По-английски, например, они обозначаются разными корнями, соответственно ester (сложный эфир) и ether (простой эфир). Среди биологически активных веществ есть и те и другие, но сложных эфиров там в целом больше. Без знания того, что это такое, невозможно разобраться, например, в устройстве клеточной мембраны.

Кислоты versus основания

А теперь нам самое время задаться вопросом, что такое кислота. И заодно – что такое основание.

Начнем с кислоты. Как правило, кислотой называют молекулу, которая в водном растворе диссоциирует (это высоконаучный термин, означающий “распадается”) на катион водорода, то есть протон (H

), и некий анион. Например, уксусная кислота (CH

COOH) распадается в водном растворе на протон и ацетат-ион, имеющий формулу CH

COO

. Так же ведут себя и все остальные карбоновые кислоты. И не только карбоновые, но и любые другие. Например, соляная кислота (HСl) потому и называется кислотой, что распадается в воде на протон (H

) и ион хлора (Cl

). Правда, на самом-то деле протон не способен самостоятельно существовать в водном растворе – он всегда мгновенно захватывается водой, образуя так называемый ион гидроксония (H

O

). Концентрацию именно этих ионов реально измеряют при определении кислотности раствора.

Шведский химик Сванте Аррениус определял кислоту как соединение, диссоциирующее в водном растворе с образованием протона (H

), а основание – как соединение, диссоциирующее в водном растворе с образованием гидроксил-иона (OH

). Это определение – исторически первое и до сих пор самое известное, именно его обычно учат на уроках химии в школе. Хороший пример основания по Аррениусу – едкий натр NaOH, он же гидроксид натрия или просто натриевая щелочь. Это типичное ионное соединение. Даже в твердом состоянии натриевая щелочь состоит из ионов [Na

] и [OH

], а в воде она на эти ионы тут же распадается.

Теперь – плохая новость. В биохимии определение кислот и оснований по Аррениусу совершенно неприменимо. Вместо него мы будем пользоваться определением датского химика Йоханнеса Николауса Брёнстеда: кислота – молекула, отдающая протон, основание – молекула, принимающая протон.

Что это значит? Пусть, например, у нас взаимодействуют уксусная кислота и вода. В процессе взаимодействия от уксусной кислоты (CH

COOH) оторвется протон (H

), который перейдет к воде (H

O). В результате получатся анион CH

COO

и катион H

O

. В этой реакции уксусная кислота “работает” кислотой (она отдала протон), а вода – основанием (она присоединила протон). Это и есть определение Брёнстеда. Запись этой реакции будет такой:

CH

COOH + H

O ? CH

COO

+ H

O

А если для простоты проигнорировать участие воды, то такой:

<< 1 2 3 4 5 6 7 8 9 10 >>
На страницу:
5 из 10

Другие аудиокниги автора Сергей Ястребов