Оценить:
 Рейтинг: 0

Studies in the Theory of Descent, Volume II

Год написания книги
2017
<< 1 ... 6 7 8 9 10 11 12 13 14 ... 21 >>
На страницу:
10 из 21
Настройки чтения
Размер шрифта
Высота строк
Поля

Finally, there can scarcely be any doubt that No. V. would not have become transformed without forcible adaptation to an aërial life.

From these results we may venture to conclude that most Axolotl larvæ change into the Amblystoma form when, at the age of six to nine months, they are placed in such shallow water that they are compelled to respire chiefly by their lungs. The experiments before us are certainly at present but very few in number, but such a conclusion cannot be termed premature if we consider that out of several hundred Axolotls (the exact number is not given) Duméril obtained only about thirty Amblystomas, while v. Kölliker bred only one Amblystoma out of a hundred Axolotls.

It now only remains questionable whether each larva could have been forced to undergo metamorphosis, but this could only be decided by new experiments. It was originally my intention to have delayed the publication of the experiments till Fräulein v. Chauvin had repeated them in larger numbers, but as my Axolotls have not bred this year (1875) I must abandon my scheme, and this can be done the more readily because, for the theoretical consideration of the facts, it is immaterial whether all or only nearly all the Axolotls could have been compelled to undergo transformation. I must not, however, omit to mention that Herr Gehrig, the curator of our Zoological Museum, bred a considerable number of larvæ from the same brood as that with which Fräulein v. Chauvin experimented, and that of these larvæ six lived over the winter without undergoing metamorphosis. They were always kept in deep water and thus furnished the converse experiment to those recorded above; they further prove that this whole brood did not have a previous tendency to undergo metamorphosis.

If these new facts are to be made use of to explain the nature of this extraordinary process of transformation in accordance with our present conception, the data already known must in the first place be called to our aid.

It has first to be established that Siredon Mexicanus never, as far as we know, undergoes metamorphosis in its native country. This Amphibian is there only known in the Siredon form, a statement which I have taken from De Saussure,[55 - Verhandl. Schweiz. Naturforsch. Gesellschaft. Einsiedeln, 1868.] who has himself observed the Axolotl in the Mexican lakes. This naturalist never found a single Amblystoma in the neighbourhood of the lakes, “nevertheless the larva (Axolotl) is so common there that it is brought into the market by thousands.” De Saussure believes that in Mexico the Axolotl does not undergo transformation.[56 - [Eng. ed. In 1878 Señor José M. Velasco published a paper entitled “Description, metamorfosis. y costumbres de una especie nueva del genero Siredon.” Memor. Sociedad Mexicana de Historia Natural, December 26th. See Addendum to this essay.]] The same statement is distinctly made by Cope,[57 - Dana and Silliman’s Amer. Journ., 3rd series, i. p. 89. Annals Nat. Hist. vii. p. 246.] whose specimens of Siredon Mexicanus bred in America, even in captivity showed “no tendency to become metamorphosed.” On the other hand Tegetmeier observed[58 - Proc. Zoo. Soc. 1870, p. 160.] that one out of five specimens obtained from the Lake of Mexico underwent metamorphosis, and this accordingly establishes the second fact, viz. that the true Axolotl becomes transformed under certain conditions into an Amblystoma when in captivity.

This last remark would be superfluous if, as was for a long time believed, the Paris Axolotls, of which the metamorphosis was first observed and which at the time made such a sensation, were actually Siredon Mexicanus, i. e. the Siredon which alone in its native country bears the name of Axolotl. In his first communication Duméril was himself of this opinion; he then termed the animal “Siredon Mexicanus vel Humboldtii,”[59 - Compt. Rend., vol. lx. p. 765 (1865).] but subsequently, in his amplified work[60 - Nouvelles Archives du Muséum d’Histoire Nat. Paris, 1866, vol. ii. p. 268.] on the transformation of the Axolotl observed in the Jardin des Plantes, he retracted this view, and after a critical comparison of the five described species of Siredon, he came to the conclusion that the species in the possession of the Paris Museum was probably Siredon Lichenoides (Baird). All the transformations of Axolotls observed in Europe must consequently be referred to this species, since they were – at least as far as I know – all derived from the Paris colony. My own experimental specimens were also indirectly descended from these.

Now it must be admitted that this does not coincide with the fact that the Amblystoma form which Duméril first obtained from his Axolotls agreed with Cope’s species, A. Tigrinum, while on the other hand we learn from Marsh[61 - Proc. Boston Soc., vol. xii. p. 97; Silliman’s Amer. Journ., vol. xlvi. p. 364; reference given in “Troschel’s Jahresbericht” for 1868, p. 37.] that Siredon Lichenoides (Baird), when it does undergo metamorphosis, becomes transformed into Amblystoma Mavortium (Baird).

Marsh found Siredon Lichenoides in mountain lakes (7000 feet above the sea) in the southwest of the United States (Wyoming Territory), and obtained from them, by breeding in aquaria, Amblystoma Mavortium (Baird). He considers it indeed doubtful whether the Amphibian undergoes this transformation in its native habitat, although he certainly states this opinion without rigorous proof on purely theoretical considerations, because, according to his view, “the low temperature is there less favourable.”[62 - Proc. Boston Soc., vol. xii. p. 97; Silliman’s Amer. Journ., vol. xlvi. p. 364. I have not been able to get a copy of this paper, and quote from a reference in “Troschel’s Jahresbericht.” See preceding note.]

If I throw doubt upon this last statement it is simply because Amblystoma Mavortium is found native in many parts of the United States, viz: – in California, New Mexico, Texas, Kansas, Nebraska, and Minnesota. It is indeed by no means inconceivable that in the mountain lakes where Marsh obtained this species, it may behave differently with respect to metamorphosis than in other habitats, and this appears probable from certain observations upon Triton which will be subsequently referred to.

Meanwhile, in the absence of further observations, we must admit that the Paris Axolotls were not Siredon Lichenoides, but some nearly allied and probably new species. But little information is furnished by observing the course of the transformation, although it is at least established that this Axolotl in its native habitat does not undergo metamorphosis or does so as exceptionally as in Europe. Unfortunately in his papers Duméril gives no precise statement respecting the locality of this species imported from “Mexico” – it is probable that he was himself unacquainted with it, so that I can only state on the authority of Cope that Amblystoma has never been brought from south of the provinces of Tamaulipas and Chilhuahua, i. e. south of the Tropic of Cancer.[63 - Dana and Silliman’s Amer. Journ. See note 3.]

This last statement, however, gives no certainty to the matter. Of much more importance is the above-mentioned fact, that the true Axolotl of the lakes about the city of Mexico does not, as a rule, become transformed into an Amblystoma in that locality, although this species in certain cases undergoes metamorphosis when in confinement. From this circumstance and from the fact that the Paris Axolotl likewise experienced but a very small percentage of metamorphosis in captivity, we may venture to conclude that this species also, in its native habitat, either does not become transformed at all or does so only exceptionally.

But there is yet another body of facts which come prominently into view on considering the history of the transformations. I refer to the existence of numerous species of Amblystoma in a natural state. In the “Revision of the genera of Salamandridæ,” published some years ago by Strauch,[64 - Proc. Acad. Philadelph. xix. 1867, pp. 166–209.] this author, following Cope,[65 - Mém. Acad. Petersb. vol. xvi.] gives twenty species of Amblystoma as inhabiting North America. Although some of these species are based on single examples, and consequently, as Strauch justly remarks, “may well have to be reduced in the course of time,” there must nevertheless always remain a large number of species which live and propagate as true Amblystomas, and of which the habitat extends from the latitude of New York to that of New Mexico. There are therefore true species of Siredon which regularly assume the Amblystoma form under their natural conditions of life, and which propagate in this form, while, on the other hand, there are at least two species which, under their existing natural conditions of life, always propagate as Siredon. It is but another mode of expression for the same facts if we say that the Mexican Axolotl and the Paris Siredon– whether this is Lichenoides or some other species – stand at a lower grade of phyletic development than those species of Amblystoma which propagate in the salamander form. No one can raise any objection to this statement, while the alternative view maintained by all authors contains a theory either expressed or implied which is, as I believe, incorrect, viz. that the Mexican Axolotl has remained at an inferior stage of phyletic development.

All zoologists[66 - [Eng. ed. Seidlitz is an exception, since in his work on Parthenogenesis (Leipzig, 1872, p. 13) he states that “In the Axolotl, Pædogenesis, which is not in this case… monogamous, but sexual, and indeed gynækogenetic, has already become so far constant that it has perhaps entirely superseded the orthogenetic reproduction.”]] who have expressed an opinion upon the transformation of the Axolotl, and who are not, like the first observer of this fact, embarrassed by Cuvier’s views as to the immutability of species, regard the phenomenon as though a species, which owing to some special conditions had hitherto remained at a low stage of development, had now through some other influences been compelled to advance to a higher stage.

I believed for a long time that the phenomenon could not otherwise be comprehended, so little was I then in a position to bring all the facts into harmony with this view. Thus in the year 1872 I expressed myself as follows[67 - Über den Einfluss der Isolirung auf die Artbildung. Leipzig, 1872, p. 33.]: – “Why should not a sudden change in all the conditions of life (transference from Mexico to Paris) have a direct action on the organization of the Axolotl, causing it suddenly to reach a higher stage of development, such as many of its allies have already attained, and which obviously lies in the nature of its organization – a stage which it would perhaps itself have reached, although later, in its native country? Or is it inconceivable that the sudden removal from 8000 feet above the sea (Mexican plateau) to the altitude of Paris, may have given the respiratory organs an impetus in the direction of the transformation imminent? In all probability we have here to do with the direct action of changed conditions of life.”

That the substance of this last statement must still hold good is obvious from the experiments previously described, which show that by the application of definite external influences, we have it to a certain extent in our power to produce the transformation. It is precisely in this last point that there lies the new feature furnished by these experiments.

But are we also compelled to interpret the phenomenon in the above manner? i. e. as a sudden advance in the phyletic development of the species occurring, so to speak, at one stroke? I believe not.

What first made this view appear to me erroneous, was the appearance of the living Amblystomas bred from my Axolotl larvæ. These creatures by no means differed from the Axolotls merely in single characters, but they were distinct from the latter in their entire aspect; they differed in some measure in all their parts, in some but slightly and in other parts strongly – in brief, they had become quite different animals. In accordance with this, their mode of life had become completely modified; they no longer lived in the water, but remained concealed by day among the damp moss of the vivarium, coming forth only by night in search of food in dry places.

I had been able to perceive the great difference between the two stages of development from the anatomical data with which I had long been familiar, and which Duméril had made known with respect to the structure of his Amblystomas. But the collecting of numerous details gives no very vivid picture of the metamorphosis; it was the appearance of the living animal that first made me conscious how deep-seated was the transformation which we have here before us, and that this change not merely affected those parts which would be directly influenced by the change in the conditions of life, such as the gills, but that most if not all the parts of the animal underwent a transformation, which could in part be well explained as morphological adaptation to new conditions of life, and partly as a consequence of this adaptation (correlative changes), but could not possibly be regarded as the sudden action of these changed conditions.

Such at least is my view of the case, according to which a per saltum development of the species of such a kind as must here have taken place, is quite inconceivable.

I may venture to assume that most observers of the metamorphosis of Axolotl have, like myself, not been hitherto aware of the extent of the transformation, and it may thus be explained why the theoretical bearings of the case have on all sides been incorrectly conceived. We have here obviously a quite extraordinary case of the first order of importance. I believe that it can easily be shown that the explanation of the history of the metamorphosis of the Paris Axolotl which has hitherto been pretty generally accepted, necessarily comprises a very far-reaching principle. If this interpretation is correct, then in my opinion must also hold good the ideas of those who, like Kölliker, Askenasy, Nägeli, and, among the philosophers, Hartmann and Hübner, would refer the transformation of species in the first instance to a power innate in the organism, to an active, i. e. a self-urging “law of development” – a phyletic vital force.

Thus, if the Axolotls transformed into Amblystomas are regarded as individuals which, impelled by external influences, have anticipated the phyletic development of the others, then this advance can only be ascribed to a phyletic vital force, since the transformation is sudden, and leaves no time for gradual adaptation in the course of generations. The indirect influence of the external conditions of life, i. e. natural selection, is thus excluded from the beginning. But the direct action of the changed conditions of life by no means furnishes an explanation of the complete transformation of the whole structure, such as I have already alluded to, and which I will now enter into more closely.

The differences between the Paris Axolotl and its Amblystoma according to Duméril, Kölliker, and my own observations are as follow: —

1. The gills disappear; the gill-clefts close up, and of the branchial arches only the foremost remain, the posterior ones disappearing. At the same time the os hyoideum becomes changed (Duméril).

2. The dorsal crest completely disappears (Duméril).

3. The aquatic tail becomes transformed into one like that of the salamanders (Duméril), which, however, is not as in the salamander cylindrical, but somewhat compressed laterally (Weismann).

4. The skin becomes yellowish white, irregularly spotted on the sides and back (Duméril), whilst at the same time its former grey-black ground-colour changes into a shining greenish black (Weismann); it loses, moreover, the slimy secretion of the skin, and the cutaneous glands become insignificant (Kölliker).

5. The eyes become prominent and the pupils narrow (Kölliker), and eyelids capable of completely covering the eyes are formed; in Axolotl only a narrow annular fold surrounds the eyes, so that these cannot be closed (Weismann).

6. The toes become narrowed and lose their skin-like appendages (Kölliker), or more precisely, the half webs which connect the proximal extremities of the toes on all the feet (Weismann).

7. The teeth are disposed in this species, as in all other Amblystomæ, in transverse series; whilst in Axolotl, as in Triton larvæ, they are arranged at the sides of the jaw in the form of a curved arch-like band beset with several rows of teeth.[68 - Duméril represents the teeth of the vomer as separated from those of the os palatinum by a gap. This is probably accidental, since Gegenbaur (Friedrich u. Gegenbaur, the skull of Axolotl, Würzburg, 1849) figures the rows of teeth as passing over from the one bone to the other without interruption. This was the case with the Axolotls which I have been able to examine on this point; but this small discrepancy is, however, quite immaterial to the question here under consideration.] (Duméril. See his fig., loc. cit. p. 279).

8. In Axolotl the lower jaw, in addition to the teeth on the upper edge of the bone, also bears “de très petites dents disposées sur plusieurs rangs;” these last disappear after metamorphosis (Duméril). I will add that the persistent teeth belong to the os dentale of the lower jaw, and those that are shed to the os operculare.[69 - See O. Hertwig “Über das Zahnsystem der Amphibien und seine Bedeutung für die Genese des Skelets der Mundhöhle.” Archiv. für microsc. Anat., vol. xi. Supplement, 1874.]

9. The surface of the posterior moveable part of the body is slightly concave both before and after transformation; the anterior part is, however, less concave in Amblystoma than in Siredon (Duméril).

I have not yet been able to verify Duméril’s 7th and 9th statements, as I did not want to kill any of my living Amblystomas,[70 - [Eng. ed. These Amblystomas have since died and have been minutely described by Dr. Wiedersheim. See his memoir, “Zur Anatomie des Amblystoma Weismanni,” in Zeit. für wiss. Zool., vol. xxxii. p. 216.]] simply in order to confirm the observations of a naturalist in whom one may certainly place complete confidence. Neither have I as yet observed the transformation of the branchial arches, but all the other statements of Kölliker and Duméril I can entirely corroborate.

The structural differences between Axolotl and Amblystoma are considerably greater and of more importance than those between allied genera, or indeed than between the families of the Urodela. The genus Siredon undoubtedly belongs to a different sub-order to the genus Amblystoma into which it occasionally becomes transformed. Strauch, the most recent systematic worker at this group, distinguishes the sub-order Salamandrida from that of the Ichthyodea by the possession of eyelids, and by the situation of the palatine teeth in single rows on the posterior edge of the palatal bone: in Ichthyodea the eyelids are wanting and the palatine teeth are either “situated on the anterior edge of the palatal bone,” or “cover the whole surface of the palatal plates in brush-like tufts.”

How is it possible to regard such widely divergent anatomical characters as changes suddenly produced by the action (but once exerted) of deviating conditions of life? Hand in hand with the shedding of the old and the appearance of new palatine teeth, there occurs a change in the anatomical structure of the vertebral column, and also – as we may fairly conclude from Kölliker’s correct observation of the cessation of the slimy secretion – in the histological structure of the skin. Who would undertake to explain all these profound modifications as the direct and sudden action of certain external influences? And if any one were inclined to explain such changes as a consequence of the disappearance of the gills, i. e. as correlative changes, what else is such a correlation than the phyletic vital force under another name?

If from one change arising from the direct action of external agencies, the whole body can in two days become transformed in all its parts, in the precise manner which appears best adapted for the new conditions of life under which it is henceforward to exist, then the word “correlation” is only a phrase which explains nothing, but which prevents any attempt at a better explanation, and it would be preferable to profess simply the belief in a phyletic vital force.

Moreover, it is hardly permissible to seek such an explanation, since Urodela are known which have no gills in the adult state, and which nevertheless possess all the other characters of the Ichthyodea, viz. want of eyelids, characteristic palatine teeth, and the tongue bone. This is the case with the genera Amphiuma (Linn.), Menopoma (Harl.), and Cryptobranchus (v. d. Hoev.). The two first genera, as is known, still possess gill-clefts, but Cryptobranchus has even lost these clefts, which, as in Amblystoma, are overgrown by skin; nevertheless Cryptobranchus is, according to the concurrent testimony of all systematists, a true salamander in habits, tongue bone, palatine teeth,[71 - See Strauch, loc. cit. p. 10.] &c. It must further be added that the Axolotl itself can lose the gills without thereby becoming transformed into an Amblystoma. I have previously mentioned that in Axolotls which were kept in shallow water the gills frequently became diminutive, and it also sometimes happens that they completely shrivel up. I possess an Axolotl preserved in alcohol in which the gills have shrivelled up into small irregular bunches, and the dorsal crest is also so completely absent that its place is occupied by a long furrow, and even on the tail the crest has entirely disappeared from the lower edge and about half from the upper edge. Notwithstanding this, the creature is widely removed from Amblystoma in structure; it possesses the arched branchial apparatus, the palatine teeth, the skin, &c., of the Axolotl.

These facts prove, therefore, that the shedding of the gills by no means always entails all the other modifications which we observe in the metamorphosis of Axolotl, so that these modifications are thus not by any means the necessary and immediate consequence of such gill shedding.

Whether these modifications will occur after a long series of generations – whether the successors of Cryptobranchus will also one day acquire the salamandriform structure is another question, and one which I could not exactly answer in the negative. But this question does not here come into consideration, as we are now only concerned with the immediate result of the shedding of the gills.

The problem appears therefore to be as follows: – Either the hitherto received interpretation of the transformational history of the Axolotl as a further development of the species is incorrect, or else the case of Axolotl incontestably proves the existence of a phyletic vital force.

We have now to ask whether the facts of this transformational history are not capable of another explanation.

I believe that this is certainly possible, and that another interpretation can be shown to be correct with some degree of probability.

I am of opinion that those Amblystomas which have been developed in captivity in certain instances from Siredon Mexicanus (S. Pisciformis), as well as from the Paris Axolotls, are not progressive, but reversion forms; I believe that the Axolotls which now inhabit the Mexican lakes were Amblystomas at a former geological (or better, zoological) epoch, but that owing to changes in their conditions of life, they have reverted to the earlier perennibranchiate stage.

I was undoubtedly first led to this conception by the results which arose from my studies on the seasonal dimorphism of butterflies.[72 - See Part I. of this volume.] In this case we were also concerned with the two different forms under which one and the same species appears, and of which it was shown to be probable that the one is phyletically older than the other. The younger summer form, according to my view, has arisen, through the gradual amelioration of the climate, from the winter form, which at an earlier zoological epoch was the only one in existence; but the latter, the primary form, has not for this reason ceased to exist, but now alternates in each year as a winter form with the secondary summer form.

Now with seasonally dimorphic butterflies, it was easily possible to induce the summer brood to assume the winter form by exposing their pupæ for a long time to a low temperature; and it was shown to be highly probable that this abrupt and often very extensive change or transformation, only apparently takes place suddenly, and is but the apparent result of the action of cold upon this generation, whilst in fact it depends upon reversion to the primary form of the species, so that the low temperature, which is only once applied, gives but the impetus to reversion, and is not the true cause of the transformation. This cause must rather be sought in the long continued action of the cold to which the ancestors of our existing butterflies were subjected for thousands of generations, and of which the final result is the winter form.

If we assume for an instant that my interpretation of the transformation of Axolotl as just offered is correct, we should have conditions in many respects analagous to those of seasonal dimorphism. It is true that in this case the two forms no longer alternate regularly with each other, but the primary form may occasionally appear instead of the secondary form, owing to the action of external conditions.

Just as in the case of seasonal dimorphism it is possible to compel the summer generation to abandon the summer form, and to assume the winter guise by the action of cold; so in the present case we are able to induce the Axolotl to adopt the Amblystoma form by making aërial respiration compulsory at a certain stage of life; and further, just as in seasonal dimorphism it can be shown that this artificially produced change is only apparently an abrupt transformation, and is actually a reversion to the much older winter form; so here we have not an actual, but only an apparent remodelling of the species – a reversion to the phyletically older form.

This certainly appears a paradox, inasmuch as a form here arises by reversion which must yet undoubtedly rank as the more highly developed. I believe, however, that much which seems paradoxical in this statement will disappear on further examination.

It must in the first place be taken into consideration that the phyletic development of species need not by any means always take place by advancement. We have indeed many cases of retrogressive development, although in a somewhat different sense, as with parasites and those forms which have degenerated from free locomotion to a sedentary mode of life.[73 - [This is the principle of “Degeneration” recognized by Darwin (see “Origin of Species,” 6th ed. p. 389, and “Descent of Man,” vol. i. p. 206), and given fuller expression to by Dr. Anton Dohrn (see his work entitled “Der Ursprung der Wirbelthiere und das Princip des Functionswechsels.” Leipzig, 1875). A large number of cases have been brought together by Prof. E. R. Lankester, in his recent interesting work on “Degeneration, a Chapter in Darwinism.” Nature series, 1880. R.M.]] I do not confuse this kind of retrogressive development, arising from the arrest of certain organs and systems of organs, with true reversion. The latter is a return to a form which has already been once in existence; but in the former case, in spite of all simplification of the organization, some entirely new feature always comes into existence. But I am not able to see any absurdity in the assumption that even true reversion, whether of a whole species or of the individuals of a certain district, may be regarded as possible, and I require no further concession. Why, for example, should it be inconceivable that at a very remote period the Axolotl was adapted to a life on land; that through the direct and indirect action of changed conditions of life it gradually acquired the salamander form, but that subsequently, through new and unfavourable changes in the conditions of life, it again relapsed to the older form, or at least to one nearly related thereto?

At any rate such an assumption contains nothing opposed to known facts, but can be supported in many ways, and finally it commends itself, at least in my opinion, as offering the only admissible explanation of the facts before us.

The existence of a whole series of species of Amblystoma, as already mentioned, at once shows that species of Siredon can become elevated into the salamander form, and can propagate regularly in this state, and further, that this phyletic advance has already actually taken place in many species.
<< 1 ... 6 7 8 9 10 11 12 13 14 ... 21 >>
На страницу:
10 из 21