Оценить:
 Рейтинг: 0

The Wonders of Arithmetic from Pierre Simon de Fermat

Год написания книги
2021
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 30 >>
На страницу:
11 из 30
Настройки чтения
Размер шрифта
Высота строк
Поля

Hence, necessary definitions can be formulated in the form of axioms.

Axiom 1. The action of adding several numbers (summands) is their

association into one number (sum).

Axiom 2. All arithmetic actions are either addition or derived from

addition.

Axiom 3. There are direct and inverse arithmetic actions.

Axiom 4. Direct actions are varieties of addition. Besides the addition

itself, to them also relate multiplication and exponentiation.

Axiom 5. Inverse actions are the calculation of function arguments.

These include subtraction, division and logarithm.

Axiom 6. There aren’t any other actions with numbers except for

combinations of six arithmetic actions.[40 - The axioms of actions were not separately singled out and are a direct consequence of determining the essence a notion of number. They contribute both to learning and establish a certain responsibility for the validity of any scientific research in the field of numbers. In this sense, the last 6th axiom looks even too categorical. But without this kind of restriction any gibberish can be dragged into the knowledge system and then called it a “breakthrough in science”.]

3.2.3. Basic Properties of Numbers

The consequence to the axioms of actions are the following basic properties of numbers due to the need for practical calculations:

1. Filling: a+1>a

2. The neutrality of the unit: a?1=a:1=a

3. Commutativity: a+b=b+a; ab=ba

4. Associativity: (a+b)+c=a+(b+c); (ab)c=a(bc)

5. Distributivity: (a+b)c=ac+bc

6. Conjugation: a=c ? a±b=b±c; ab=bc; a:b=c:b; ab=cb; log

a=log

c

These properties have long been known as the basics of primary school and so far, they have been perceived as elementary and obvious. The lack of a proper understanding of the origin of these properties from the essence the notion of number has led to the destruction of science as a holistic system of knowledge, which must now be rebuilt beginning from the basics and preserving herewith everything valuable that remains from real science.

The presented above axiomatics proceeds from the definition the essence the notion of number and therefore represents a single whole. However, this is not enough to protect science from another misfortune i.e. so that in the process of development it does not drown in the ocean of its own researches or does not get entangled in the complex interweaving of a great plurality of different ideas.

In this sense, it must be very clearly understood that axioms are not statements accepted without proof. Unlike theorems, they are only statements and limitations synthesized from the experience of computing, without of which they simply cannot be dispensed. Another meaning is in the basic theorems, which are close to axioms, but provable. One of them is the Basic or Fundamental theorem of arithmetic. This is such an important theorem that its proof must be as reliable as possible, otherwise the consequences may be unpredictable.

Pic. 33. Initial Numbers Pyramids

3.3. The Basic Theorem of Arithmetic

3.3.1. Mistakes of the Greats and the Fermat's Letter-Testament

The earliest known version of the theorem is given in the Euclid's "Elements" Book IX, Proposition 14.

If a number be the least that is measured by prime numbers, it will not be measured by any other prime number except those originally measuring it.

The explain is following: “Let the number A be the least measured by the prime numbers B, C, D. I say that A will not be measured by any other prime number except B, C, D”. The proof of this theorem looks convincing only at first glance and this visibility of solidity is strengthened by a chain of references: IX-14 ? VII-30 ? VII-20 ? VII-4 ? VII-2.

However, an elementary and even very gross mistake was made here. Its essence is as follows:

Let A=BCD where the numbers B, C, D are primes. If we now assume the existence of a prime E different from B, C, D and such that A=EI then we conclude that in this case A=BCD is not divisible by E.

This last statement is not true because the theorem has not yet been proven and it doesn’t exclude for example, BCD=EFGH where E, F, G, H are primes other than B, C, D. Then

A:E=BCD:E=EFGH:E=FGH

i.e. in this case it becomes possible that the number A can be divided by the number E and then the proof of the theorem is based on an argument that has not yet been proven, therefore, the final conclusion is wrong. The same error can take place also in other theorems using decomposition of integers into prime factors. Apparently, due to the archaic vocabulary Euclid's “Elements” even such a great scientist as Euler did not pay due attention to this theorem, otherwise, he would hardly have begun to use “complex numbers” in practice that are not subordinate to it.

The same story happened with Gauss who also did not notice this theorem in the Euclid's "Elements", but nevertheless, formulated it when a need arose. The formulation and proof of Gauss are follows:

“Each compose number can be decomposed into prime factors in a one only way.

If we assume that a composite number A equal to a

b

c

…, where a, b, c, … denote different primes, can be decomposed into prime factors in another way, then it is first of all clear that in this second system of factors, there cannot be other primes except a, b, c, …, because the number A composed of these latter cannot be divisible by any other prime number” [11, 25].

This is an almost exact repeating of erroneous argument in the Euclid's proof. But if this theorem is not proven, then the whole foundation of science built on natural numbers collapses and all the consequences of the definitions and axioms lose their significance. And what to do now? If such giants of science as Euclid and Gauss could not cope with the proof of this theorem, then what we sinners can to do. But yet there is a way out and it is indicated in one amazing document called "Fermat's Letter-Testament".

This letter was sent by Fermat in August 1659 to his longtime friend and former colleague in the Parliament of Toulouse the royal librarian Pierre de Carcavy from whom he was received by the famous French scientist Christian Huygens who was the first to head the French Academy of Sciences created in 1666. Here we give only some excerpts from this Fermat's letter, which are of particular interest to us [9, 36].

“Summary of discoveries in the science about numbers. …

1. Since the usual methods set in the Books are not sufficient to prove very difficult sentences, I finally found a completely special way to solve them. I called this method of proof infinite or indefinite descent. At first, I used it only to prove negative sentences such as: … that there exists no a right triangle in numbers whose area is a square”. See Appendix II for details.

The science about numbers is called here arithmetic and the further content of the letter leaves no doubt about it. Namely with arithmetic not only mathematical, but also all other sciences begin. In arithmetic itself the descent method is one of the fundamental one. The following are examples of problems whose solution without this method is not only very difficult, but sometimes even hardly to be possible. Here we will name only a few of these examples.

"2. For a long time, I could not apply my method to affirmative sentences because rounds and circuitous ways to achieve the aim are much more difficult than those that served me for negative sentences. Therefore, when I needed to prove that every prime number that is by unit more than multiple of four, consists of <sum of> two squares, I was in a greatest difficulty. But finally, my thoughts repeated many times shed light that I did not have and the affirmative sentence became possible to interpret with my method using some new principles that needed to be attached to them. This progress in my reasoning for the case of affirmative sentences is as follows: if some prime number that on 1 exceeds the multiplied of 4, does not consist of two squares, then there is another a prime number of the same nature, smaller than this and then a third, also smaller etc. going down until you come to the number 5, which is the smallest from all numbers of this nature. It therefore, cannot consist of two squares, what however, takes place. From this by proof from the contrary we can conclude that all primes of this nature should consist of two squares”.

This Fermat’s theorem was first proven by Euler in 1760 [6, 38], (see Appendix III), and in the framework of the very complex Gauss' "Deductive Arithmetic" this theorem is proving in one sentence [23]. However, no one succeeded in repeating the proof of Fermat himself.

“… 3. There are infinitely many questions of this kind, but there are others that require new principles for applying the descent method to them … This is the next question that Bachet as he confesses in his commentary on Diophantus, could not prove. On this occasion, Descartes made the same statement in his letters acknowledging that he considers it so difficult that he sees no way to solve it. Each number is a square or consists of two, three or four squares".
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 30 >>
На страницу:
11 из 30