ЛИТЕРАТУРА >>
тема: Авторам!!!
автор темы:
Апельсин
цитировать
В настоящий момент создано небольшое издательство, которое только-только начинает работать. Печатать будем развлекательно-познавательное чтиво. Тут идея появилась в этой связи: Одна из газет будет посвящена литературному и окололитературному хулиганству: истории, рассказы, стихи и прочая байда - все то, что человек может прочесть в пути, на диване, в туалете, в конце-концов. Предполагается создание 'издания болтунов' - рассказчиков историй, придуманных и непродуманных рассказов, баек. Я предлагаю присоединиться. Гонорарный фонд небольшой, но тут все дело в возможности выразить себя. Конечно, чем больше тираж будет расти, тем выше будут гонорары. Литературное творчество - слишком сильно сказано, скорее газету могут наполнять материалы хулиганско-иронические. Графоманы всех мастей и литераторы с прищуром глаз - авторы произведений, которые должны печататься в газете.Обыгрывание нестандартности и где-то абсурдности мышления - провокационность, преднамеренно направленная на вызов ответной реакции - вот материалы газеты. Такая история:Свои мысли по поводу и без повода можно присылать ПОКА по данному адресу: pvr@r52.ruЕсли Вы желаете печататься - отавляйте свои произведения в разделе или присылайте их мне по электронной почте.С уважением,Павел Родионов

Тема создана: 2004.01.12 16:03 MSK
АИА цитировать
"Артефакт числа Пи как ошибка Коллективного Сознания"
Открытое ПИсьмо в Академию Наук Российской Федерации.

1) "Всё гениальное просто" - народное эмпиПИрическое правило.
2) "Ubi materia - ubi geometria" - "Где материя, там и геометрия" - Иоганн Кеплер.
3) "Лицом к лицу - лица не увидать. Большое видится на расстоянии" - Сергей Есенин.
4) "Таким образом задача состоит не в том, чтобы видеть то, что никто не видел; а в том, чтобы думать так, как никто не думал о том, что все видят" - Эрвин Шрёдингер.

Пи, несомненно, одна из наиболее универсальных и фундаментальных констант, известных Человечеству. В силу своей универсальности Пи используется в вычислениях для микро- и макро-космоса и входит как и в формулы, описывающие движение комет, астероидов, космических кораблей и других небесных тел в астрономии, так и в формулы для вычислений электронных орбит в квантовой физике и квантовой химии. Возьмите в руки практически любой учебник, справочник, энциклопедию на русском языке и в каждом их них Вы прочтёте (цитирую) "греческой буквой Пи обозначают отношение длины ОКРУЖНОСТИ к ЕЁ диаметру". Если Вы владеете иностранным языком, то попробуйте поискать это же самое определение в учебниках на другом языке. В англо-язычных источниках посвящённых геометрии Вы прочтёте (опять цитирую): "греческой буквой Пи обозначают отношение длины окружности КРУГА к ЕГО диаметру". Вы почувствовали разницу, Дамы и Господа?
К одному из самых ранних упоминаний о числе Пи относится упоминание в знаменитой "Задаче о квадратуре круга" - о якобы невозможности при помощи только циркуля и линейки построения квадрата, площадь которого в точности равна площади данного круга. На практике это означает кажущуюся недоступность построения чисто геометрически, без калькулятора (понятное дело, откуда столько лет назад взяться калькулятору) отрезка длиной "квадратный корень из Пи". Заметьте, "товарищи учёные, доценты с кандидатами", что речь в известной головоломке идёт не об "оквадрачивании окружности", а именно о "квадратуре круга". То есть не о трансформации линии из круглой в квадратную, а о построении новой фигуры с поверхностью, равной по площади поверхности исходной фигуры. Вот если бы в задаче говорилось о длине линий, а не о площади фигур, то тогда было бы уместным "окружностное" определение Пи так, как оно нам известно из учебников. И мы всё это время должны были бы рассуждать о кажущейся невозможности построения квадрата, периметр которого в точности равен длине исходной окружности. А геометрически это совершенно другая задача. На бытовом языке: представьте, что Вы, Господа жрецы науки, сегодня плотники и кладёте паркет или ковёр. Вас, безусловно, интересует площадь поверхности пола. Если Вам завтра набивать плинтус, то Вас весь пол уже не интересует, а только его кантик, не так ли? Скажите пожалуйста, товарищи учёные и неучёные секретари, Вы чувствуете различие между линией и фигурой? Линия - это тоже геометрическая фигура, имеющая вполне определённые характеристики, такие как размер но, в отличие от полноценной фигуры, не имеющая поверхности. Как по Вашему, есть разница между целой ПИццей и бубликом?
Или вот географический пример: государственная граница России. Это линия. Контур, окаймляющий территорию страны. Длина линии (в данном примере - государственной границы) измеряется в (кило)-метрах. Поверхность же фигуры (территории России) характеризуется (измеряется) квадратными (кило)-метрами. Поверхность есть участок, занимаемый страной на поверхности Земного шара. Заметьте, кстати, что участок ШАРА, а не куба и не ПИрамиды! Банальные вроде вещи, правда, и причём здесь число Пи? А вот при чём. Позвольте мне Вас спросить, действительные члены и жаждущие своей очереди корреспонденты, кандидаты в академики, население страны где живёт: на кантике, на государственной контурной пограничной линии или на же на поверхности? Давайте определимся в терминах. Периметр некоей поверхностной (то есть обладающей поверхностью) фигуры есть линия, теоретически не имеющая толщины. В случае с квадратом, например, это рамка: замкнутая ломаная линия, состоящая из 4 равных отрезков. Длина стороны квадрата есть длина одного из отрезков. Теперь к ситуации с кругом и окружностью. Окружность есть всего лишь линия, периметр круга. Замкнутая кривая. Велосипедный обруч. Спасательный бублик. Кольцо без властелина. Нечто, имеющее конкретные размеры (длину), но не имеющее поверхности. В отличие от круга, который окаймлён этой самой окружностью. Вот у круга (у ПИццы, этого блина с сыром) есть поверхность. Интересный факт: в ситуации с гладкими формами (кругом и окружностью) исторически сложилось так, что и в русском и других языках существуют раздельные термины для соответствующих фигур: "круг" и "окружность". А для угловатых форм: треугольника, квадрата, ромба и других в случае необходимости приходится оговаривать особо, имеем ли мы ввиду только периметр соответствующей конфигурации или же полноценную фигуру с поверхностью. Вот теперь самое время поговорить о поверхности, на которой некий периметр (круглый ли, квадратный, треугольный, государственно-граничный) может что-либо окаймлять. Если, например, участок выделяемой поверхности идеально гладкий и плоский, тогда квадратная рамка периметра ограничит нечто вроде обычного зеркала. Если некая поверхность идеально гладкая, но изогнутая, как ёлочная игрушка, тогда мы получим зеркало для комнаты смеха. Вот вполне реальная ситуация. Пусть в качестве рассматриваемой поверхности взята поверхность Земного шара (шара, ШАРА! а не куба или ПИрамиды) со всеми находящимися там реками и морями, горами и долинами; а в качестве периметра - государственная граница России. Наложив периметр на поверхность, мы получим территорию страны с реальной амплитудой рельефа. Очевидно, что один и тот же контур (например - одна и та же окружность) может служить периметром для двух круглых, но принципиально разных фигур, зависящих от типа поверхности. Во- первых, некая окружность есть периметр круга идеально пло

Сообщение создано: 2004.10.20 15:50 MSK
ПРИНИМАТЬ УЧАСТИЕ В ВИРТУАЛЬНЫХ КОНФЕРЕНЦИЯХ (ФОРУМАХ), ВЫ СМОЖЕТЕ ТОЛЬКО ПОСЛЕ ТОГО, КАК СТАНЕТЕ ЗАРЕГИСТРИРОВАННЫМ ЧИТАТЕЛЕМ
ЗАПИСАТЬСЯ В БИБЛИОТЕКУ

ЕСЛИ ВЫ ЯВЛЯЕТЕСЬ ЗАРЕГИСТРИРОВАННЫМ ЧИТАТЕЛЕМ, ТО ВАМ НЕОБХОДИМО ВОЙТИ В СИСТЕМУ СО СВОИМИ УЧЕТНЫМИ ДАННЫМИ
ВХОД В БИБЛИОТЕКУ