Оценить:
 Рейтинг: 3

Увлекательная бионика

Год написания книги
2019
Теги
<< 1 2 3 4 5
На страницу:
5 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля
Очевидно, что паутина – это прежде всего средство, с помощью которого паук охотится. Поразительным образом природа заложила в него программу создания довольно сложных конструкций. Более того, для нитей, выполняющих разные функции, паук вырабатывает различные виды шелка. Одно дело – сердцевинное волокно ловчей спирали, другое – сигнальная нить, третье – нить для яйцевого кокона, четвертое – для обматывания добычи и так далее.

Многие паучьи «конструкции» буквально один к одному были использованы архитекторами при проектировании перекрытий большой площади. Возможно, вы видели похожее сооружение над огромным современным стадионом. Напоминает паутину и переплетение тросов подвесных мостов. Но дело еще и в другом.

Почему паутинки обладают столь большой эластичностью? Почему, заметно удлиняясь, нити не рвутся, а выдерживают давление ветра, натяжение от движения самого паука во время плетения сети или когда он бежит к запутавшемуся насекомому?

Оказывается, сухой шелк – основа нити – довольно жесткий материал, плохо поддающийся растяжению. Но в момент выделения шелковая нить обволакивается вязкой жидкостью, вырабатываемой пауком. Затем эта жидкость впитывает атмосферную влагу и собирается в мельчайшие капельки. Поверхностное натяжение капелек заставляет шелковое волокно скручиваться внутри них в «мотки». Растягивая нить, вы словно разматываете эти моточки, поэтому нить и может без провисания в несколько раз менять свою длину. Недаром в Индонезии из паутины до сих пор делают рыболовные лески.

Совсем недавно, в 2017 году, ученым удалось создать искусственную паутину, не уступающую по своим свойствам настоящей. Волокно из гидрогеля, состоящего из воды, оксида кремния и целлюлозы, вытягивали в тончайшие нити и давали подсохнуть. Эти нити выдерживали механическое напряжение в 100–150 мегапаскалей и были прочнее вискозы, искусственного шелка и некоторых сортов стали. А еще они могли растворяться в воде, подобно настоящей паутине.

Разработчики надеются использовать эти свойства в производстве суперпрочных тканей.

Подсказки жуков и водорослей

Порой человек умудряется очень быстро пройти путь, на который природа потратила миллионы лет. Особенно интересно сравнить результаты, когда инженеру или конструктору не приходило в голову с ней советоваться.

Взгляните на картинку, где показано, как эволюционировало искусство перекрытия сооружений, и как менялись с течением времени строение и форма жестких надкрылий жуков.

По рисункам в нижнем ряду (слева направо) заметно, что первоначально вдоль надкрылья располагались продолговатые трубочки. Затем они вытягивались, число их росло, потом уменьшалось, и сами они словно подрастали, превращаясь в то, что инженеры называют ребрами жесткости.

Еще позже эти ребра расширялись в верхних своих частях, которые в дальнейшем сливались. В итоге получилась так называемая рамная конструкция с вертикальными колонками-перемычками. Это довольно легкое и весьма прочное покрытие. Цель, которую «ставила» перед собой природа, была достигнута.

Если же проследить по рисункам в верхнем ряду за различными вариантами конструкций, создаваемых человеком, то, разумеется, полного совпадения не обнаружится. Путь, по которому шли конструкторы, изобиловал находками и неудачами. Но развитие техники привело, в конце концов, к тому же результату, которого достигла природа.

Не всегда, конечно, схожи пути развития конструкторской мысли человека и «инженерных» задумок природы. Однако, если ставятся одинаковые цели, решения удивительным образом копируют друг друга.

Когда человек выясняет, как ту или иную архитектурную проблему пыталась разрешить природа, он часто обращается к ней за советом. Интересен пример из практики одного отечественного изобретателя. Наблюдая за морским прибоем, он обнаружил, что голые камни на береговой линии испещрены ямками и царапинами, а валуны, покрытые водорослями или мхом, почти не разрушаются от ударов волн. Это привело его к изобретению защитного слоя, содержащего упругие стержни, волокна или пластинки для бетонных гидротехнических сооружений.

Не хотите ли пожить в улье?

Удивителен подарок природы – мед. Вкусный, душистый, сладкий, полезный… Но не менее удивительны и те, кто его производят. Много занимательного можно рассказать о пчелах, однако сейчас для нас наиболее важно их архитектурное мастерство.

Конечно, вы видели, а может быть, даже держали в руках соты – эти маленькие пчелиные домики. Строят их насекомые и для жилья, и для хранения меда, и для выведения потомства. А материал, из которого лепятся соты, пчелы изготавливают сами, выделяя вещество, которое после растирания челюстями и смачивания пчелиной слюной превращается в светлый и мягкий воск.

Сначала пчелы возводят в улье опорную стенку, затем на ней «моделируют» соты. Поначалу круглые ячейки в стене пчелы выскабливают изнутри под углом шестьдесят градусов. Именно такой угол обеспечивает затем сотам правильную шестигранную форму и отменную крепость.

Аристотель (384–322 до н.э.) – древнегреческий философ. Создал первую классификацию животных, определил пять основных типов чувств: зрение, осязание, обоняние, слух и вкус. Ему принадлежат сочинения «Описание животных» и «О возникновении животных». Считал, что научному объяснению всегда должно предшествовать свободное от предвзятости наблюдение.

Замечено это было еще в древности, например, Аристотелем, писавшим, что пчелиный улей настолько прочен и тверд, что его трудно разрушить даже острой палкой. Однако долгое время было неясно, почему пчелы выбрали для улья именно такую форму. Давайте попробуем воспроизвести ход рассуждений исследователей, пытавшихся разгадать эту загадку. Очевидно, что пчелам требовалось найти такое решение, чтобы и домики были крепкими, и разумно использовалось их пространство.

Из отложенных в соты яиц в течение нескольких дней развиваются куколки. Просторней всего они чувствовали бы себя в помещении округлой формы (вроде цилиндрика). Но тогда между домиками оставалось бы много свободного места, да и сами домики надо было бы строить по отдельности.

Ни квадраты, ни равносторонние треугольники, заложенные в основание ячейки, не подходят для достижения поставленной цели, поскольку куколка находилась бы в середине ячейки, оставляя пустыми ее углы.

После долгих, продолжавшихся, возможно, миллионы лет проб пчелы выбрали шестиугольник. А человек своими расчетами подтвердил, что это идеальная форма для наиболее полного использования площади. Согласитесь, что контур шестиугольника близок к кругу и почти весь объем ячейки заполняется куколкой, а общие стенки домиков ведут к большой экономии строительного материала – воска.

Архитекторы и строители уже убедились, насколько выгодны такие ячеистые элементы для сборных конструкций, и активно их применяют. Появились сотообразные плотины, элеваторы, гостиницы, жилые дома…

Почему прочны кости?

Достигнув в строительстве зданий высокого мастерства, люди, тем не менее, долгое время не рисковали строить высотные дома. Ведь строительные материалы были не настолько прочны, чтобы выдерживать огромные нагрузки, возникающие при возведении небоскребов.

К тому, о чем мы говорили ранее, обсуждая, на какую высоту поднимаются в деревьях соки, надо добавить, что ограничения на рост растений накладывает и их вес. Дерево циклопических размеров раздавит само себя.

Проблема, однако, заключается не только в прочности материала, но и в способах соединения изготовленных из него деталей сооружения. Скажем, из легких и длинных деревянных бревен можно соорудить каркасы различной формы, а вот из камня нет смысла вырубать длинную перекладину – при испытываемых ею нагрузках от собственного веса такое его применение будет совсем неоправданным.

Использование металла в строительстве довольно быстро привело к появлению так называемых ажурных конструкций. Иными словами, монтировался «скелет» здания, а уже к нему крепились остальные элементы – стены, оконные и дверные блоки, лестницы и прочее.

Сказав слово «скелет», мы не просто прибегли к наглядной аналогии. Не только медикам и физиологам известно, какой прочностью обладают составляющие его кости. Например, бедренная кость человека выдерживает нагрузку до полутора тонн (это вес автомобиля). Конечно, хорошо, что природа «сооружает» нас с таким запасом прочности. Но как ей это удается?

Сотни миллионов лет она словно ставила опыт за опытом, отрабатывая жизнеспособные «конструкции». В последние десятилетия были найдены останки нескольких гигантских древних ящеров. Сначала – сейсмозавра («сотрясателя земли»), весившего около восьмидесяти тонн. Позже – аргентинозавра ростом свыше тридцати метров и весом более 100 тонн. И маменчизавра, вес которого доходил до 120 тонн. Какие же прочные им были нужны скелеты!

Исследование костей показывает, что прочность их строения определяется в том числе и своеобразным распределением составляющих их тканей. Они выстилаются таким образом, что разносторонние – и с торцов, и с боков – нагрузки вызывают прежде всего сжатие или растяжение костей, а не их изгиб. Для сравнения вспомните: как легче сломать палку – вдоль или поперек? К тому же основная масса костей сосредоточена в их внешней части, а внутри они пористы, практически пусты. Особенно это заметно у птиц.

Такое созданное природой распределение материала удивительным образом совпадает с инженерными находками человека. Например, люди уже давно поняли, что столбы и опоры не обязательно делать сплошными, можно вполне обойтись трубами. В конструкциях различных металлических башен порой можно обнаружить буквальное повторение конструкции костей. Таково, например, устройство знаменитой Эйфелевой башни. А вот выяснилось это чуть ли не через сто лет после ее создания.

Так что теперь при постройке высотных сооружений люди уже намеренно стремятся заимствовать решения, найденные и опробованные природой.

Чья скорлупа крепче?

Помните выражение «не стоит выеденного яйца»? В этих словах кроется пренебрежительное отношение к яичной скорлупе.

А ведь это не что иное, как пример чудесной природной конструкции. Толщина скорлупы куриного яйца – доли миллиметра, но попробуйте раздавить его, сжав ладонями с концов. Не так-то легко, правда?

Недаром свое потомство «заключали» в яйца не только птицы, но и черепахи, змеи, крокодилы и даже громадные динозавры. Примером прочности может служить скорлупа страусиного яйца, выдерживающего груз в 105 килограммов.

В чем причина прочности яичной скорлупы? Главным образом в ее геометрической форме. На рисунке показано, что при внешнем давлении на скорлупу усилие передается таким образом, что сжатие скорлупы происходит в направлении, почти перпендикулярном силе. Иными словами, давление воспринимается не отдельно каким-либо участком скорлупы, а распределяется по всей ее поверхности. Поэтому сидящая на яйцах курица не расплющивает их, но в то же время удары вылупляющегося птенца изнутри сравнительно легко разрушают его обитель.

Скорлупа куриного яйца состоит из семи оболочек, причем они не расслаиваются даже при резких перепадах температуры и влажности. Это объясняется тем, что хотя слои не одинаковы по составу, некоторые их физические свойства весьма близки. Важный элемент скорлупы – тонкая внутренняя пленка, порой мешающаяся нам добраться во время еды до сердцевины яйца.

Эта пленка в свое время здорово помогла строителям. Они возводили театр, крыша которого должна была иметь форму огромной яичной скорлупы. Во время строительства по крыше пошли трещины. Что же здесь упустили проектировщики? Или природа «дала маху»?

Изучив скорлупу более тщательно, заметили, что к ней «крепится» изнутри тонкая эластичная пленка, создающая предварительное напряжение, как бы стягивая всю конструкцию скорлупы. Выход из сложного положения был найден: крышу снабдили подобной пленкой, и театр благополучно достроили.

Теперь уже не вызывают удивления ни давно используемые арочные конструкции, ни сравнительно недавно вошедшие в обиход строителей гигантские сплошные своды, напоминающие формой яйцо.

Но скорлупа – всего лишь один из образцов прочных природных оболочек.

Чем хороши складки?

Кроме куриного яйца, к естественным оболочечным конструкциям относятся, как упоминалось, и яйца других птиц, а также земноводных. Сюда же следует зачислить и твердые оболочки орехов, панцири черепах, крабов, раковины моллюсков. Да и многие насекомые могли бы похвастать крепостью своей кутикулы – так называется их внешний скелет.

Однако все это гладкие поверхности. Но в природе встречаются и обладающие большой прочностью оболочки несколько иной формы. Например, некоторые раковины напоминают развернутый складчатый веер. Эту форму не обошли своим вниманием архитекторы, издавна используя ее как деталь свода. Подобная форма представляет собой набор соединенных между собой маленьких выпуклых поверхностей, даже по отдельности выдерживающих, как та же скорлупа, большие внешние воздействия.

Чем же хороши складки? Обычный бумажный лист легко гнется даже под своим весом. Однако если мы сложим лист гармошкой, его прочность возрастет. Даже просто согнутый пополам (в виде крыши домика) лист сможет выдержать большие, чем плоский лист бумаги, нагрузки. Стоит ли говорить о том, насколько жестче он станет при сворачивании в трубочку.

Хороший пример, дающий почувствовать изменение жесткости конструкции, – «охота» на мух. Вы хотите прихлопнуть непрошеную назойливую гостью, а под рукой нет ничего, кроме газеты. Что вы предпримете? Не будете же шлепать развернутым листом! Такой удар насекомое и не почувствует. Невольно руки сами складывают или скручивают газету, – теперь уж мухе не поздоровится.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4 5
На страницу:
5 из 5