Благодаря многим разветвлениям афферентных путей на уровне спинного мозга и подкорковых центров обеспечивается многократное взаимодействие афферентных импульсов в пределах одной сенсорной системы, а также взаимодействие между различными сенсорными системами (в частности, можно отметить чрезвычайно обширные взаимодействия вестибулярной сенсорной системы со многими восходящими и нисходящими путями). Особенно широкие возможности для взаимодействия различных сигналов создаются в неспецифической системе мозга, где к одному и тому же нейрону могут сходиться (конвергировать) импульсы различного происхождения (от 30 000 нейронов) и от разных рецепторов тела. Вследствие этого неспецифическая система играет большую роль в процессах интеграции функций в организме.
При поступлении в более высокие уровни нервной системы происходит расширение сферы сигнализации, приходящей от одного рецептора. Например, в зрительной системе сигналы одного рецептора связаны (через систему дополнительных нервных клеток сетчатки – горизонтальных и др.) с десятками ганглиозных клеток и могут, в принципе, передавать информацию любым корковым нейронам зрительной коры. С другой стороны, по мере проведения сигналов происходит сжатие информации. Например, одна ганглиозная клетка сетчатки объединяет информацию от сотни биполярных клеток и десятков тысяч рецепторов, т. е. такая информация поступает в зрительные нервы уже после значительной обработки, в сокращенном виде.
Существенной особенностью деятельности проводникового отдела сенсорных систем является передача без искажений специфической информации от рецепторов к коре больших полушарий. Большое количество параллельных каналов (в зрительном нерве 900 000 волокон, в слуховом – 30 000 волокон) помогает сохранить специфику передаваемого сообщения, а процессы бокового (латерального) торможения – изолировать эти сообщения от соседних клеток и путей.
Одной из важнейших сторон обработки афферентной информации является отбор наиболее значимых сигналов, осуществляемый восходящими и нисходящими влияниями на различных уровнях сенсорных систем. В этом отборе участвует также неспецифический отдел нервной системы (лимбическая система, ретикулярная формация). Активируя или затормаживая многие центральные нейроны, он способствует отбору наиболее значимой для организма информации. В отличие от обширных влияний среднемозговой части ретикулярной формации, импульсация из неспецифических ядер таламуса воздействует лишь на ограниченные участки коры больших полушарий. Такое избирательное повышение активности небольшой территории коры имеет значение в организации акта внимания, выделяя на общем афферентном фоне наиболее важные в данный момент сообщения.
7.10.2. Обработка информации на корковом уровне
В коре больших полушарий сложность обработки информации возрастает от первичных полей ко вторичным и третичным ее полям. Так, простые клетки первичных полей зрительной коры являются детекторами черно-белых границ прямых линий, воспринимаемых мелкими участками сетчатки, а сложные и сверхсложные нейроны вторичных зрительных полей выделяют длину линий, их углы наклона, различные контуры фигур, направление движения объектов, имеются клетки, опознающие знакомые лица людей и т. п.
Первичные поля коры осуществляют анализ раздражений определенной модальности, поступающих от связанных с ними специфических рецепторов. Это так называемые ядерные зоны анализаторов по И. П. Павлову: зрительные, слуховые и др. Их деятельность лежит в основе возникновения ощущений. Лежащие вокруг них вторичные поля (периферия анализаторов) получают от первичных полей результаты обработки информации и преобразуют их в более сложные формы. Во вторичных полях происходит осмысление полученной информации, ее узнавание, обеспечиваются процессы восприятия раздражений данной модальности. От вторичных полей отдельных сенсорных систем информация поступает в задние третичные поля – ассоциативные нижнетеменные зоны, где происходит интеграция сигналов различной модальности, позволяющая создать цельный образ внешнего мира со всеми его запахами, звуками, красками и т. п. Здесь на основе афферентных сообщений от разных частей правой и левой половины тела формируются сложные представления человека о схеме пространства и схеме тела, которые обеспечивают пространственную ориентацию движений и точную адресацию моторных команд к различным скелетным мышцам. Эти зоны также имеют особое значение в хранении полученной информации. На основе анализа и синтеза информации, обработанной в заднем третичном поле коры, в ее передних третичных полях (передней лобной области) формируются цели, задачи и программы поведения человека.
Важной особенностью корковой организации сенсорных систем является экранное, или соматотопическое (лат. соматикус – «телесный», топикус – «местный»), представительство функций. Чувствительные корковые центры первичных полей коры образуют как бы экран, отражающий расположение рецепторов на периферии, т. е. здесь имеются проекции «точка в точку». Так, в задней центральной извилине (общечувствительном поле) нейроны тактильной, температурной и кожной чувствительности представлены в том же порядке, что и рецепторы на поверхности тела, напоминая копию человечка (гомункулюса); в зрительной коре – как бы экран рецепторов сетчатки; в слуховой коре – в определенном порядке нейроны, реагирующие на определенную высоту звуков. Тот же принцип пространственного представительства информации наблюдается в переключательных ядрах промежуточного мозга, в коре мозжечка, что значительно облегчает взаимодействие различных отделов ЦНС.
Область коркового сенсорного представительства по своим размерам отражает функциональную значимость той или иной части афферентной информации. Так, в связи с особой значимостью анализа информации от кинестетических рецепторов пальцев руки и от речеобразующего аппарата у человека территория их коркового представительства значительно превосходит сенсорное представительство других участков тела. Аналогично этому на единицу площади центральной ямки в сетчатке глаза приходится почти в 500 раз большая зона зрительной коры, чем на такую же единицу площади периферии сетчатки.
Высшие отделы ЦНС обеспечивают активный поиск сенсорной информации. Это наглядно проявляется в деятельности зрительной сенсорной системы. Специальные исследования движений глаз показали, что взор фиксирует не все точки пространства, а лишь наиболее информативные признаки, особо важные для решения какой-либо задачи в данный момент. Поисковая функция глаз является частью активного поведения человека во внешней среде, его сознательной деятельностью. Она управляется высшими анализирующими и интегрирующими областями коры – лобными долями, под контролем которых происходит активное восприятие внешнего мира.
Кора больших полушарий обеспечивает наиболее широкое взаимодействие различных сенсорных систем и их участие в организации двигательных действий человека, в том числе в процессе его спортивной деятельности.
7.10.3. Значение деятельности сенсорных систем в спорте
Эффективность выполнения спортивных упражнений во многом зависит от процессов восприятия и переработки сенсорной информации. Эти процессы обусловливают как наиболее рациональную организацию двигательных актов, так и совершенство тактического мышления спортсмена. Четкое восприятие пространства и пространственная ориентация движений обеспечиваются функционированием зрительной, слуховой, вестибулярной, кинестетической рецепции. Оценка временных интервалов и управление временными параметрами движений базируются на проприоцептивных и слуховых ощущениях. Вестибулярные раздражения при поворотах, вращениях, наклонах и т. п. заметно влияют на координацию движений и проявление физических качеств, особенно при низкой устойчивости вестибулярного аппарата.
Экспериментальное выключение отдельных сенсорных афферентаций у спортсменов (выполнение движений в специальном ошейнике, исключающем активацию шейных проприорецепторов; при использовании очков, закрывающих центральное или периферическое поле зрения) приводило к резкому снижению оценок за упражнение или к полной невозможности его исполнения. В противоположность этому, сообщение спортсмену дополнительной информации (особенно срочной – в процессе движения) помогало быстрому совершенствованию технических действий. На основе взаимодействия сенсорных систем у спортсменов вырабатываются комплексные представления, сопровождающие его деятельность в избранном виде спорта – «чувство» льда, снега, воды и т. п. При этом в каждом виде спорта имеются наиболее важные – ведущие сенсорные системы, от активности которых в наибольшей мере зависит успешность выступлений спортсмена.
8. Кровь
Кровь представляет собой внутреннюю жидкую среду (ткань) организма, обеспечивающую определенное постоянство основных физиологических и биохимических параметров и осуществляющую гуморальную связь между органами. Существует два понятия: периферическая кровь, состоящая из плазмы и находящихся в ней во взвешенном состоянии форменных элементов, и система крови (Ланг Г. Ф., 1936), куда относят периферическую кровь, органы кроветворения и кроверазрушения (костный мозг, печень, селезенка и лимфатические узлы). Кровь является своеобразной формой ткани и характеризуется рядом особенностей: жидкая среда организма находится в постоянном движении, составные части крови имеют разное происхождение, образуются и разрушаются в основном вне ее.
8.1. Состав, объем и функции крови
Кровь состоит из форменных элементов (42–46 %) – эритроцитов (красных кровяных клеток), лейкоцитов (белых кровяных клеток) и тромбоцитов (кровяных пластинок) – и жидкой части – плазмы (54–58 %). Плазма крови, лишенная фибриногена, называется сывороткой. У взрослого человека общее количество крови составляет 5–8 % массы тела, что соответствует 5–6 л. Объем крови принято обозначать по отношению к массе тела (мл/кг). В среднем он равен у мужчин 65 мл/кг, у женщин – 60 мл/кг, у детей – около 70 мл/кг.
Количество эритроцитов в крови примерно в тысячу раз больше, чем лейкоцитов, и в десятки раз выше, чем тромбоцитов. Последние по своим размерам в несколько раз меньше, чем эритроциты. Поэтому эритроциты составляют более 90 % всего объема, приходящегося на долю форменных элементов крови. Выраженное в процентах отношение объема форменных элементов к общему объему крови называется гематокритом. У мужчин гематокрит составляет в среднем 46 %, у женщин – 42 %. Это означает, что у мужчин форменные элементы занимают 46 %, плазма – 54 % объема крови, а у женщин – 42 и 58 % соответственно. Эта разница обусловлена тем, что у мужчин содержание эритроцитов в крови больше, чем у женщин. У детей гематокрит выше, чем у взрослых; в процессе старения гематокрит снижается. Увеличение гематокрита сопровождается возрастанием вязкости крови (внутренним ее трением), которая у здорового взрослого человека составляет 4–5 ед. Поскольку периферическое сопротивление кровотоку прямо пропорционально вязкости, любое существенное увеличение гематокрита приводит к повышению нагрузки на сердце, в результате чего кровообращение в некоторых органах может нарушаться.
Кровь выполняет в организме целый ряд физиологических функций.
• Транспортная функция крови заключается в переносе всех необходимых для жизнедеятельности организма веществ (питательных веществ, газов, гормонов, ферментов, метаболитов).
• Дыхательная функция состоит в доставке кислорода от легких к тканям и углекислого газа от тканей к легким. Кислород переносится преимущественно эритроцитами в виде соединения с гемоглобином – оксигемоглобином (HbO
), углекислый газ – плазмой крови в форме бикарбонатных ионов (НСО
). В обычных условиях при дыхании воздухом 1 грамм гемоглобина присоединяет 1,34 мл кислорода, а так как в одном литре крови содержится 140–160 граммов гемоглобина, то количество кислорода в нем составляет около 200 мл; эту величину принято называть кислородной емкостью крови (иногда этот показатель рассчитывают на 100 мл крови). Таким образом, если принять во внимание, что общий объем крови в организме человека составляет 5 л, то количество кислорода, связанного с гемоглобином, в ней будет равно примерно одному литру.
• Питательная функция крови обусловлена переносом аминокислот, глюкозы, жиров, витаминов, ферментов и минеральных веществ от органов пищеварения к тканям, системам и депо.
• Терморегуляторная функция обеспечивается участием крови в переносе тепла от органов и тканей, в которых оно вырабатывается, к органам, отдающим тепло, что и поддерживает температурный гомеостаз.
• Выделительная функция направлена на перенос продуктов обмена (мочевина, креатин, индикан, мочевая кислота, вода, соли и др.) от мест их образования к органам выделения (почки, легкие, потовые и слюнные железы).
• Защитная функция крови играет важную роль в формировании иммунитета, который может быть как врожденным, так и приобретенным. Различают также местный и общий, клеточный и гуморальный. Гуморальный иммунитет обусловлен выработкой антител в ответ на поступление в организм микробов, вирусов, токсинов, ядов, чужеродных белков; клеточный – связан с фагоцитозом, в котором ведущая роль принадлежит лейкоцитам, активно уничтожающим попадающих в организм микробов и инородные тела, а также собственные отмирающие и мутагенные клетки.
• Регуляторная функция заключается в осуществлении как гуморальной (перенос кровью гормонов, газов, минеральных веществ), так и рефлекторной регуляции, связанной с влиянием крови на интерорецепторы сосудов.
8.2. Форменные элементы крови
Образование форменных элементов крови называется гемопоэзом. Он осуществляется в различных кроветворных органах. В костном мозге образуются эритроциты, нейтрофилы, эозинофилы и базофилы. В селезенке и лимфатических узлах формируются лейкоциты. Образование моноцитов осуществляется в костном мозге и в ретикулярных клетках печени, селезенки и лимфатических узлов. В красном костном мозге и селезенке образуются тромбоциты.
8.2.1. Функции эритроцитов
Основной физиологической функцией эритроцитов является связывание и перенос кислорода от легких к органам и тканям. Этот процесс осуществляется благодаря особенностям строения эритроцитов и химического состава гемоглобина.
Эритроциты являются высокоспециализированными безъядерными клетками крови диаметром 7–8 микрон. В крови человека содержится 4,5–5 ? 10
/л эритроцитов. Форма эритроцитов в виде двояковогнутого диска обеспечивает большую поверхность для свободной диффузии газов через его мембрану. Суммарная поверхность всех эритроцитов в циркулирующей крови составляет около 3000 м
.
В начальных фазах своего развития эритроциты имеют ядро и называются ретикулоцитами. В нормальных условиях ретикулоциты составляют около 1 % от общего числа циркулирующих в крови эритроцитов. Увеличение числа ретикулоцитов в периферической крови может зависеть как от активации эритроцитоза, так и от усиления выброса ретикулоцитов из костного мозга в кровоток. Средняя продолжительность жизни зрелых эритроцитов составляет около 120 дней, после чего они разрушаются в печени и селезенке.
В процессе передвижения крови эритроциты не оседают, так как они отталкиваются друг от друга, поскольку имеют одноименные отрицательные заряды. При отстаивании крови в капилляре эритроциты оседают на дно. Скорость оседания эритроцитов (СОЭ) в нормальных условиях у мужчин составляет 4–8 мм в 1 час, у женщин – 6–10 мм в 1 час.
По мере созревания эритроцитов их ядро замещается дыхательным пигментом – гемоглобином (Hb), составляющим около 90 % сухого вещества эритроцитов, а 10 % составляют минеральные соли, глюкоза, белки и жиры. Гемоглобин – сложное химическое соединение, молекула которого состоит из белка глобина и железосодержащей части – гема. Гемоглобин обладает свойством легко соединяться с кислородом и столь же легко его отдавать. Соединяясь с кислородом, он становится оксигемоглобином (HbO
), а отдавая его – превращается в восстановленный (редуцированный) гемоглобин. Гемоглобин крови человека составляет 14–15 % ее массы, т. е. около 700 г.
В скелетных и сердечной мышцах содержится близкий по своему строению белок миоглобин (мышечный гемоглобин). Он более активно, чем гемоглобин, соединяется с кислородом, обеспечивая им работающие мышцы. Общее количество миоглобина у человека составляет около 25 % гемоглобина крови. В большей концентрации миоглобин содержится в мышцах, выполняющих функциональную нагрузку. Под влиянием физических нагрузок количество миоглобина в мышцах повышается.
8.2.2. Функции лейкоцитов
Лейкоциты по функциональным и морфологическим признакам представляют собой обычные клетки, содержащие ядро и протоплазму. Количество лейкоцитов в крови здорового человека составляет 4–6 ? 10
/л. Лейкоциты неоднородны по своему строению: в одних из них протоплазма имеет зернистое строение (гранулоциты), в других зернистости нет (агранулоциты). Гранулоциты составляют 65–70 % всех лейкоцитов и делятся в зависимости от способности окрашиваться нейтральными, кислыми или основными красками на нейтрофилы, эозинофилы и базофилы.
Агранулоциты составляют 30–35 % всех белых кровяных клеток и включают в себя лимфоциты и моноциты. Функции различных лейкоцитов разнообразны.
Процентное соотношение различных форм лейкоцитов в крови называется лейкоцитарной формулой. Общее количество лейкоцитов и лейкоцитарная формула не являются постоянными. Увеличение числа лейкоцитов в периферической крови называется лейкоцитозом, а уменьшение – лейкопенией. Продолжительность жизни лейкоцитов составляет 7–10 дней.
Нейтрофилы составляют 60–70 % всех лейкоцитов и являются наиболее важными клетками защиты организма от бактерий и их токсинов. Проникая через стенки капилляров, нейтрофилы попадают в межтканевые пространства, где осуществляется фагоцитоз – поглощение и переваривание бактерий и других инородных белковых тел.
Эозинофилы (1–4 % от общего числа лейкоцитов) адсорбируют на свою поверхность антигены (чужеродные белки), многие тканевые вещества и токсины белковой природы, разрушая и обезвреживая их. Кроме дезинтоксикационной функции эозинофилы принимают участие в предупреждении развития аллергических реакций.
Базофилы составляют не более 0,5 % всех лейкоцитов и осуществляют синтез гепарина, входящего в антисвертывающую систему крови. Базофилы участвуют также в синтезе ряда биологически активных веществ и ферментов (гистамин, серотонин, РНК, фосфотаза, липаза, пероксидаза).
Лимфоциты (25–30 % от числа всех лейкоцитов) играют важнейшую роль в процессах образования иммунитета организма, а также активно участвуют в нейтрализации различных токсических веществ.