Оценить:
 Рейтинг: 0

Холодный ядерный синтез. L E N R

<< 1 2 3 4 5 >>
На страницу:
2 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

Структура этого нового микропространства, пожалуй, самая сложная из всех известных. Например, известно, что каждый электронный слой атома из K, L, M, N и т.д., начинается с S-оболочки, на которой удерживаются только не более двух электронов (фото.1) и то с противоположными спинами. Каждая последующая оболочка того или иного слоя имеет вполне определенное максимально возможное значение числа электронов, размещенных на ней. Так, например, у атома алюминия (Z = 13) в слое K имеется лишь одна оболочка S с двумя электронами, в слое L – две, S и Р оболочка с 2 и 6-ю электронами соответственно, а в слое М – 2 электрона на S-оболочке и один электрон на Р-оболочке. У атомов с большим порядковым номером верхние слои имеют D и F оболочки, на которых может быть размещено от десяти и более электронов. Такая структура атомного микропространства носит ярко выраженный ячеисто-сферический характер с центром в виде положительно заряженного ядра, окруженного волноводами электронов, зафиксированными в определенных слоях и специальным образом уложенных на поверхности оболочек. Такое размещение электронов обусловлено исключительно полуцелым спином электронов и гибким изменившимся его волноводом, как «спрутом» охватившим часть сферы диаметром с дебройлевской длиной волны этого связанного электрона. Структура атома представлена на фото 1 и фото 2.

Фото 2. Схема внутренних электрических полей атома с образованием зоны холодной плазмы.

У водорода на такой сфере размещён только один электрон. У гелия два электрона размещены на этой сфере таким образом, чтобы центральное поле электрического заряда ядра «видело» максимальную поверхность волноводов этих электронов не только ближайшей поверхности, но и последующих по мере возрастания радиуса. В данном случае это достигается диаметрально противоположным расположением. Когда ядро обладает более значительным зарядом электрического потенциала, то на оболочке большего диаметра появляется больше свободной поверхности для размещения большего количества электронов. Так, например, у алюминия на втором слое, во второй p-оболочке может на поверхности сферы разместится уже 6 электронов. Эти электроны равномерно перекрывают своими волноводами всю поверхность этой оболочки. Поэтому на поверхности оболочек большего диаметра их число резко возрастает. Такая структура атомов возможна лишь в достаточно свободном пространством, какое имеется на поверхности планет и звёзд, но такая структура реально невозможна в глубине нижней мантии Земли, где благодаря очень высокому давлению отсутствует достаточно свободное пространство для образования перехода нейтрона с объёмом соответствующим размеру 10

см в объём атома водорода с размером радиуса 10

см, но возможно образование мю-атомов водорода, энергия которых может лишь представляться не температурой вращательно-колебательных состояний, а только вращением.

Рассмотренная структура размещения электронов в соответствующих оболочках полностью исключает всякое орбитальное движение электронов в пространстве вокруг ядра. Орбитальное движение электронов, как и движение электрона из возбуждённого состояния в основное состояние атома должно приводить к излучению дебройлевских волн, что наблюдается на практике высвечиванием оптических фотонов, но не наблюдается для атомов, находящихся в основном состоянии.

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням (слоям) и подуровням (оболочкам), называется электронной конфигурацией этого атома. Так, например, выше рассмотренная конфигурация атома алюминия может быть представлена, как 1s

2s

2p

3s

3p.

В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимума потенциальной энергии. Это значит, что сначала заполняются слои, для которых:

– главное квантовое число «n» минимально,

– внутри одного слоя сначала заполняется s- оболочка, затем p- и лишь затем d и т. д.,

– заполнение происходит так, чтобы (n + l) было минимально,

– в пределах одной оболочки электроны располагаются таким образом, чтобы равномерно своими волноводами покрыть всю поверхность этой оболочки не соприкасаясь друг с другом,

– заполнение электронных атомных оболочек выполняется в соответствии с принципом Паули.

Атомные микропространства проявляют весьма характерные свойства. Например, атом водорода способен поглощать или излучать вполне определенные серии фотонов. Это так называемые характеристические серии Бальмера, Пашена, Лаймана и т. д. При поглощении фотонов из этой серии, электрон переходит из 1S состояния в другие, более высоковозбужденные состояния – 2Р или 3S и т. д. У атома гелия возможностей еще больше – у него два электрона 1S

. Если возбужден только один электрон – 1S2S или 1S3Р и т.д., а если оба – 2S

или 2Р3S и т. д. Что это значит? Это значит, что при поглощении энергии электрон переходит в потенциальном поле ядра на более далёкое расстояние от него, которые называются ридберговскими состояниями атомов.

Главный вопрос. Почему при рекомбинации протона с электроном, последние не падают друг на друга, как противоположные заряды, а остаются в противостоянии друг другу на расстоянии 10 

см, с образованием устойчивых атомов?

Как было уже показано на примере нейтрона, в процессе его распада, из него уносится энергия 1,29 Мэв в форме частиц (электрона и антинейтрино) и кинетической энергии, распределенной между ними. Эта унесенная энергия и является тем барьером противостояния, который электрон благодаря своему стабильному существованию в виде полусферы радиусом 2,4х10

см размещён в атоме в сферическом слое при нормальных условиях радиусом 10

—10

см, и поэтому не может упасть на поверхность протона. По той причине, что размер волноводов электрона на три десятичных порядка превосходит внешний волновод любого атомного ядра, т.е. чем меньше масса микрочастицы, тем больше размер-диаметр его волноводов в полной аналогии со свойствами ЭМВ – чем выше энергия, тем короче длина волны и выше частота вихрона. Магнитный монополь электрона может жить только на поверхности сферы-полусферы указанного радиуса. Можно образно сказать, что энергия в вихревых полях атома представлена формой материи холодной плазмы в виде слоя сферического пространства – барьер.

Поэтому дебройлевская полусфера-волновод связанного атомного электрона не может физически «упасть» в центр – она способна лишь окружить его. Эта же причина является основой образования всех атомов таблицы Менделеева. И именно этот факт доказывает путь рождения всех атомных ядер, как и путь протона. К великому сожалению на коллайдерах и на других технических установках пока не научились получать плазму вихронов с энергией, позволяющей получать нейтральные ядра с большим атомным весом, чем масса нейтрона. Это позволило бы проанализировать тип и вид распада, а также возможность синтеза искусственного атома. С другой стороны, известно, что размер мюона соизмерим с внешними оболочками ядер, и поэтому присоединением мюона к ядру (мезоатом) осуществляется его приближение к ядру в 207 раз ближе, чем для электрона.

Атом в целом электрически нейтрален. Механизм электронейтральности поясняется схемой, представленной на фото 2. Ядро атома имеет положительный заряд электрического потенциала и соответственно излучает в 4? вокруг себя поток положительно заряженных зёрен-электропотенциалов. Оболочки из электронов, образованные на расстоянии-радиусах от 0,5 – 15 х 10

см, постоянно обновляются магнитными монополями с рождением экранирующего облака-потока отрицательно заряженных зёрен-потенциалов. Внутри атома образуется динамическое равновесное микропространство-поле, заполненное двух знаковым электрическим эфиром – электрическая холодная плазма. Противоположно заряженные потоки зерен-электропотенциалов аннигилируют с образованием силовых линий электрического поля и уничтожением пространства, что приводит к притяжению источников их породивших и фиксации параметров атомного пространства путём рождения и обновления холодной плазмы из безмассовых электрических зёрен-потенциалов с противоположными знаками. Нескомпенсированный электрический эфир может выводится из межатомного пространства при сильной внешней поляризации вещества большими по значению электрическими потенциалами и способен к образованию облака-заряда электрическими зёрнами-потенциалами с последующим его захватом и преобразованием в электрический холодный ток технологиями Н. Тесла, Э. Грея.

Отсюда следует жизнь и существование зарядов электрическим потенциалом в пятой форме, характеризующей наличие атомного пространства в активной аннигилирующей форме, приводящей к наличию в нём двухзнакового эфира зоны холодной плазмы из противоположных зёрен-электропотенциалов обоих знаков.

Аналогична по рождению и уничтожению магнитная холодная плазма, которая характеризуется притяжением полюсов стационарных магнитов.

Однако гравитационная холодная безмассовая плазма, порождаемая в основном ядром атома, излучающим более дальнодействующие и однознаковые зёрна-гравпотенциалы, отличается по свойствам. Однополярный гравитационный эфир, излучаемый замкнутыми оболочками атомного ядра, вследствие его высокой плотности выходит не только наружу атома, но и кластера вещества в целом, формируя внешнее гравитационное поле такого атомно-молекулярного вещества. Это поле взаимодействует с центральным полем тяготения Земли и проявляет таким взаимодействием и у атома, и кластера из таких атомов, свойство массы и инертности.

Поэтому снаружи атома внешнее электрическое поле ядра полностью скомпенсировано внешними полями электронов, размещённых на фиксированных оболочках. В связи с этим, у атомов появляется возможность объединяться в кластеры вещества, вплоть до жидкости и твёрдого тела. Однако у металлов внешние валентные электроны атомов почти свободны и образуют в больших массивных кластерах проводников облака свободного отрицательно заряженного электрического эфира, который по технологиям Н. Тесла, Э. Грея, Т. Морея и многих других можно захватывать и преобразовывать специальными схемами в холодноеэлектричество, образуя независимые и автономные источники питания.

Атомы, их атомные ядра и электроны проявляют магнитные свойства, но разные и в разных формах, что позволяет широко применять метод Ядерно-магнитного резонанса – спин ядра в атомах углерода равен нулю, а в атомах водорода полуцелый и т.д., спин электрона полуцелый, а его магнитный момент больше чем у атомных ядер и т. д. Несмотря на то, что магнитные монополи широкого частотного спектра являются строителями атомов и его элементов (ядра и электроны), и при таком производстве «отходами» является его двух знаковый невидимый магнитный эфир, образующий магнитные моменты атомных ядер и электронов, его до сих пор не могут зарегистрировать и проявить. Однако, как и в случае с электрическим эфиром, если использовать известные методы намагничивания некоторых металлов и их сплавов, например, метод Лидскалнина, то удаётся выделить потоки магнитного эфира даже из обычного стержня железа, при этом намагниченный стержень становится постоянным магнитом на достаточно долгое время. А его магнитный эфир из зёрен-потенциалов проявляет себя в виде потоков из полюсов стационарных магнитов и занимает промежуточное свойство по дальнодействию и проникающей способности по сравнению с электрическим и гравитационным эфиром.

Основной вывод – для объяснения механизма образования атомов нет необходимости привлечения механизма орбитального движения атомных электронов.

1.2 Нейтрон, протон, дейтрон и античастицы

Нейтрон прародитель самого распространенного во Вселенной химического элемента – водорода. Такие свойства объема, который занимает нейтрон, как спин, масса, инертность, плотность, магнитный момент, электрический дипольный момент, распределение плотности электрического заряда и магнитного момента, время жизни и другие – отрицают его как материальную бесструктурную частицу и определяют его как некое сложно-составное вихревое электромагнитное микропространство.

Ф. Вилчек в своей книге[7 - Вильчек Ф. Тонкая физика. Масса, эфир и объединение всемирных сил. – СПб.: Питер, 2018. – 336 с.: ил. – (Серия «New Science»). ISBN 978-5-496-02934-6], развивая, дополняя и по новому интерпретируя (первый, второй закон Эйнштейна и т.д) идеи ЧТО и ОТО, а также утверждая КХД (принципы её становления одинаковы с принципами КЭД, с той лишь разницей, что в КЭД один электрический заряд, а в КХД их три и те цветные), приходит к выводу – (в пункте 3 позиций из чего устроен мир) – основнойкомпонент реальности оживлен квантовыми процессами.

В данной книге по аналогии – основной компонент реальности оживлён магнитными монополями.

Основной вопрос современности – где расположен и что является главным источником производства нейтронов? Ответ: основными источниками производства нейтронов являются ядра пульсаров-нейтронные звёзды и все ядра светящихся звёзд, а также геологически активных планет типа Земли. Другими источниками, которые порождают такие микропростраства, являются возбужденные (тем или иным методом) более крупные или тяжелые ядра атомов химических элементов.

Возраст жизни нейтронов зависит от силы и формы полей в объемах, где они присутствуют. В обычных условиях на поверхности Земли нейтрон распадается (фото 3), превращаясь в протон.

Фото 3. Распад нейтрона

Кроме протона при распаде появляются электрон и антинейтрино. Кинетическим корпускулярным осколком этой ядерной реакции, уносящим часть энергии, является антинейтрино. В процессе термализации, т.е. охлаждении этих частиц до состояния при, котором происходит их рекомбинация, образуется атом водорода. Период полураспада (10—20 минут) зависит от некоторых внешних условий. Присутствие небольшой примеси протонов и электронов существенно увеличивает их возраст, так как электрические поля этих частиц блокируют процесс разрыхления вихронов внешних оболочек нейтронов, тем самым замедляют их распад. На поверхности ЧСТ, ядра нейтронной звезды, т.е. в очень сильном центральном гравитационном поле нейтроны живут долго без распада, накапливаясь в таком количестве, что образуют достаточно толстую атмосферу. В конечном итоге, этот слой нейтронов, отдаляясь в область слабого гравитационного поля и распадаясь, формирует слой протонов и антипротонов, которые аннигилируют взрывом сверхновой, т.е. происходит одновременный вынужденный взрыв-аннигиляция всей атмосферы.

Нейтрон обладает внешними и внутренними свойствами. Внешние свойства обнаруживают с помощью различных технических средств и приёмов вычислений системы измерений СИ. К ним относятся внешние поля нейтронов, пространственный размер, спин, заряд массы, магнитный момент, отсутствие электрического заряда, период полураспада. Внешние поля заряда массы (гравитационные поля) создаются также как и у мюонов, но в отличие от них сформированы суммарным излучением трёх контурных оболочек нейтрона, обладающего набором уже различных частот. Внешнее электрическое поле нейтрона, как и в атоме, полностью уничтожено аннигиляцией противоположных по заряду излучаемых зёрен-электропотенциалов. Кроме того нейтрон и протон имеют очень большие аномальные магнитные моменты, которые в 1,91 и 2,79 раз соответственно больше по абсолютной величине ядерного магнетона, что свидетельствует о значительных токах магнитных монополей внутри их оболочек.

В реальном рассмотрении в основу положена структура, основанная на электромагнитной модели (а не кварковой) нейтронов, разработанной в Стэнфордском университете научной группой во главе с Хофштадтером[8 - Hofstadter R. Электромагнитная структура ядер и нуклонов. М. ИЛ. 1958, сб. переводов.] – 1956 год. Начиная с 1958 года, подобная модель была развита и дополнена Р. Вильсоном с сотрудниками из Корнельского университета, Г. Шоппером[9 - H. Schopper, Phys. Bl?tter, 7, 316 (1961).] и С. Бергиа с сотрудниками по идеям Фрэзера и Фулко, Намбо и Чу. Из результатов этих изысканий следует, что «структура нуклонов также, как и в атоме, состоит из плотного ядра (4 х 10

см) и внешних оболочек. На роль ядра может претендовать нейтральные К-мезоны, а на роль внешних оболочек нейтральные и заряженные ?-мезоны. Основная идея, на которой построены эти модели, заключается в том, что протон и нейтрон испускают заряженные ?-мезоны, но затем возвращают их назад на свои внешние оболочки. Причём их испускание происходит в состоянии с отличным от нуля моментом количества движения, т.е. они должны вращаться вокруг уже названного ядра нуклонов. Из-за этого и образуются круговые токи, которые порождают аномальные магнитные моменты».

Американский физик-теоретик Джулиан Швингер в основу магнитной модели[10 - Schwinger J. A Magnetic Model of Matter, Science 165 (No. 3895), 757 (1969).] материи всех элементарных частиц заложил дуально заряженные частицы магнито-электрические дионы, которые являются, как он считает составной частью и нейтронов. И есть все основания считать, как он полагает, что основа всех элементарных частиц и в том числе нейтронов и протонов состоит из подобных дионов, а не из кварков. Это подтверждается тем, что при аннигиляции нуклона и антинуклона (дезинтеграция материи) зарегистрирован вылет нескольких ?-мезонов, а не каких то виртуальных кварков или пентакварков, которые никогда не были экспериментально зарегистрированы.

Антинейтрон был открыт в Национальной лаборатории им. Лоуренса (Беркли) в 1956 году, через год после открытия антипротона.

Практически уже давно освоена технология получения античастиц на мезонных фабриках и коллайдерах. Рождение пар античастиц производится не только с помощью встречных пучков адронов, но и при столкновениях пучков электронов и позитронов с энергией выше 1 Гэв.

Образование и аннигиляция антинейтрона.
<< 1 2 3 4 5 >>
На страницу:
2 из 5