Оценить:
 Рейтинг: 0

Рождение вещества во Вселенной. Путь нейтрона

<< 1 2 3 4 5 6 7 >>
На страницу:
5 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Другими словами, бесструктурной точечной пассивной массы электрон не имеет, а имеет внутренний направленный волновод определённых размеров из зёрен-гравпотенциалов, который и создаёт суммарный заряд гравитационным потенциалом – заряд массы. При обновлении волновода предыдущий излучается, создавая внешнее гравитационное поле, которое взаимодействует с центральным гравитационным полем Земли. Поэтому он инертен и имитирует собственный заряд массы. Точно также внешний направленный волновод из зёрен-электропотенциалов формирует суммарный заряд отрицательного электрического потенциала и направление спина электрона, а также и его внешнее электростатическое поле. При этом следует заметить, что динамизм излучения внешних полей электрона последовательно вихревой разных по значению зёрен-потенциалов – ближе к узлу находятся большие значения и выталкиваются с большей скоростью, а в пучности уменьшаются до нуля. Поэтому они разные и по дальнодействию, и по разному проявляют свои свойства относительно кластерообразования газоподобного электрическогоэфира, изучением которых и занимался Тесла.

После того, как в поле атомного ядра (фото 4), магнитный монополь фотона поделился пополам (чёрный конус), он до полной остановки во время торможения электрическим монополем микровихрона превратился-зарядился в свой аналог, т.е. в источник заряда энергии покоя в замкнутом объёме – гравитационный монополь (зелёный шарик в центре на поверхности волновода), как процесс противодействия изменению скорости света. Поэтому его структура по объёму аналогична структуре магнитного монополя. Однако некоторые его свойства отличаются от свойств магнитного. В отличие от разрядки свободного магнитного монополя, он производит при разрядке волновод из зёрен-гравпотенциалов, а на удалении в четверть длины волны воспроизводит изменение отрицательного электрического вихревого поля соответствующими зёрнами-электропотенциалами, которые регенерируют (спин полуцелый) тот же по знаку магнитный монополь. Этот процесс противоположен процессу, который происходит с магнитным монополем фотона (спин целый). Другими словами, в свободном вихроне фотона зарядка вторичного магнитного монополя происходит через посредство электрического монополя и находится в функции противодействия предыдущему первичного магнитного монополя. В замкнутом вихроне электрона при разрядке гравитационного монополя на удалении в четверть длины волны индуктируется электрический монополь (источник), который создаёт переменное электрическое поле и уже это переменное поле регенерирует магнитный монополь. А функция регенерации того же по знаку магнитного монополя возлагается на вращающийся заряд гравитационным потенциалом в полном соответствии с основным законом природы. Это и есть гравиэлектромагнитный монополь.

Разрядка гравитационного монополя – это вращательное движение по внутренней красной спирали, т.е. движение спирального зелёного тора с увеличивающимся диаметром. Во время этого движения происходит возбуждение электрического монополя, его внешнего волновода и развёртка-установка зёрен-гравпотенциалов на внутреннем волноводе от большего до меньшего значения величины до замыкания внешней поверхности контура электрона. Затем этот контур обновляется новым периодом обновления, а предыдущий последовательно выталкивается наружу и создаёт внешние поля электрона. Высокая частота таких повторяющихся процессов формирует во внешнем пространстве электрическое, гравитационное поле и магнитный момент, как от стационарного источника (но реально таких бесструктурных источников не существует), т.е. индуктируют массу, электрический заряд, спин и магнитный момент электрона в системе СИ.

Спин микрочастицы – это параметр, который характеризует степень (полную или неполную) завершённости квантового перехода вращательной материи при перезарядке носителя индуктированного заряда энергии с одного знака на другой. Этот параметр в целом определяет форму, тип и состояние движения микрочастицы, т.е. образуется открытый самодвижущийся (фотон) или замкнуто-колебательный (электрон) её фазовый объём. Эти признаки и определяют вид движения частицы – кинетический или безынерционный волновой самодвижущийся. Это определение является прямым следствием закона сохранения энергии. В данном случае заряд энергии электрона (магнитный монополь) не меняет знак при квантовом переходе, поэтому оно неполное, а спин полуцелый.

Структура значений потенциалов сферы гравитационного монополя, аналогична магнитному – большей сфере спиральных волноводов из зёрен соответствуют меньшие значения по абсолютной величине, а меньшей – наибольшие значения потенциалов. Поэтому, когда гравитационный монополь разрядился, его наибольшая сфера в этот момент находится в точке волновода с максимальной пучностью, откуда начинал свою зарядку и движение вновь индуктированный с тем же знаком магнитный монополь сферой большего радиуса, а в данный момент заканчивает свою зарядку сферой меньшего диаметра в центре суммарной сферы.

Фотоядерныереакции лёгкими фотонами. Аналогично с уже рассмотренным процессом фотоатомных реакций с испусканием микрочастиц, происходит процесс Гигантскогорезонанса при пороговых энергиях фотонов от 10 до 25 Мэв, когда длина волны становится сравнимой с диаметром ядра, что приводит также к излучению различных микрочастиц.

Фотоядерныереакциирезонансно-«тяжёлыми» фотонами. Рассмотренные выше фотоны, полученные при излучении возбуждённых атомов или ядер, назовём «лёгкими» фотонами, только таким фотонам свойственно определение их энергии через произведение частоты и постоянной Планка. К их числу следует отнести и лазерное излучение даже высоких плотностей потока луча. Однако в природе Вселенной встречаются такие процессы, например, электрические разряды атмосферных молний, при которых синфазно за очень короткий промежуток времени порядка микросекунды и в очень малом локализованном объёме импульсно-переменном электрическом поле больших токов и напряжений рождаются путём слияния магнитные заряды с максимально возможной плотностью упаковки зёрен-потенциалов как на самих спиралях, формирующих сферу этого заряда, так и названных спиралей, вплотную примыкающих друг к другу. Назовём такие электромагнитные фотоны «тяжёлыми» (фото 5), а источники производства таких фотонов, т.е. «тяжёлых» магнитных зарядов, выделим в отдельный класс. Резонансно-«тяжёлый» монополь вихрона СВЧ или ИК диапазона ЭМВ (в его фазовом объёме находится очень большое количество атомов), проходя через кластер вещества, также производит волноводы и способен ионизировать не только электроны внешних и внутренних оболочек атома, но может ионизировать частицы внешних оболочек атомных ядер. Как следствие этих процессов, вдоль потенциалов волноводов идут вихревые токи, а первичный химический состав вещества изменяется.

Фото 5. Лёгкие атомные и «тяжёлые» СВЧ – фотоны.

Рассмотренный процесс касается формирования лишь одного атомного микровихрона фотона. При взаимодействии атомов с резонансными и резонансно-«тяжёлыми» СВЧ или ИК фотонами возможно их частичное поглощение с возбуждением механических колебательно-вращательных уровней (увеличение температуры атомов), ионизация частиц внешних оболочек атомов и атомных ядер с выделением соответствующей ядерной энергии. Частоты таких фотонов находятся в известном ИК-диапазоне. Энергия же «тяжёлых» фотонов определяется уже величиной магнитных зарядов, а не произведением частоты на постоянную Планка.

Длиноволновый гигантский солнечный макровихрон специфически взаимодействует с плазмой Солнца – в момент его выхода через поверхность фотосферы его электромонополь захватывает кластер фотосферы, который через мгновение будет выброшен исчезающим электромонополем из его фазового объёма, и образует в фотосфере пару брешь – «чёрное пятно» и белое пятно над ним. Такие заряды замечены (фото 6) на поверхности Солнца – назовём их «сверхтяжёлыми» длиноволновыми фотонами.

Фото 6. Кластер фотосферы, захваченный гигантским гипермонополем и пары «чёрных и белых» пятен (справа).

LENR[18 - LENR-ХЯС-СВАУШК – основной процесс производства тяжёлыхи сверхтяжёлых атомных ядер на звёздах и планетах.]. Именно такой метод позволяет при относительно небольшой частоте фотонов (ВЧ, СВЧ, КВЧ и ИК диапазон), но очень высокой плотности зёрен-потенциалов на волноводах, с помощью их излучения специальными магнетронами[19 - В природе такие фотоны порождаются молниями, а также самовращающимися ядрами ЧСТ звёзд и планет.] инициировать эффекты СВЧ бытовой микроволновой печи – вихревые токи, а также уже широко известные низкоэнергетические ядерные реакции (LENR) с производством дополнительной энергии (тепловой или электрической) и новых атомных ядер. Это происходит за счет фотоионизации частиц, входящих в состав внешних ядерных оболочек тяжёлых элементов. При этом, необходимо отметить аналогию поведения взаимодействия лёгких фотонов с внешними электронами в атоме с «тяжёлыми» фотонами, которые таким же образом ионизируют частицы с внешних оболочек атомных ядер.

Мезоны – это промежуточные состояния распадающихся оболочек, образующих внутренние и внешние оболочки атомных ядер. Основной источник этих мезонов верхние слои атмосферы, с ядрами атомов газа которой сталкиваются космические и солнечные протоны. Процесс производства мезонов – это ионизация оболочек атомных ядер, т.е. ядерных оболочек, мгновенно распадающихся в более долго живущие подобные частицы с тем же спином, т.е. в мезоны. Время, которое затрачивается на переход таких микрочастиц к мезонам от момента взаимодействия до их рождения, является сугубо ядерным и оценивается порядком 10

секунды. За такое время зарегистрировать истинную частицу, её структуру и другие параметры совершенно невозможно.

Фоторождение мезонов[20 - А. С. Игнатов, А. Н. Мушкаренков, В. Г. Недорезов*, 2009 год, ФОТОРОЖДЕНИЕ п-МЕЗОНОВ НА ПРОТОНАХ, НЕЙТРОНАХ И ЛЕГКИХ ЯДРАХ В ОБЛАСТИ НУКЛОННЫХ РЕЗОНАНСОВ. Институт ядерных исследований РАН, Москва. Поступила в редакцию 25.12.2008 г.].

Экспериментально установлено – фоторождение [203] ?-мезонов на ядрах производится с помощью гамма – излучения с энергией до 1500 Мэв, полученное при обратном комптоновском рассеянии фотонов с энергией 2—2,5 кэв на электронных пучках накопителей с энергией до 6000 Мэв, так как время жизни свободных пи-мезонов достаточно велико и средняя длина их свободного пробега сравнима с радиусом легкого ядра.

Мезоны участвуют во всех известных типах взаимодействий. Поэтому их структурный состав в основном представлен частицами в состоянии с целочисленным спином. На фото 7 приведены схемы мгновенных структур фазовых замкнутых объёмов мезонов. В динамике движения магнитных монополей, образующих мезоны в свободном пространстве, возможно самое широкое многообразие таких форм, зависимых от полей окружения.

Фото 7. Схемы ? – мезонов и структуры их волноводов.

На фото 7 приведены ??-мезоны, т.е. нейтральные (первая и вторая позиции слева, сверху), причём на второй позиции указаны внутри волноводы из гравитационных зёрен-потенциалов, а также пи-плюс и пи-минус мезоны (позиции справа и внизу). Они все нестабильны и имеют спин равный нулю.

Нейтральные мезоны – это промежуточное состояние замкнутых распадающихся внутренних оболочек ядер, образованные парами переходных ядерных и противоположных магнитных монополей, которые уже неспособны создавать даже нестабильные частицы с полуцелым спином. Эти монополи аналогичны тем, которые создают частицы со спином ? – электроны, позитроны и мюоны, но стабильно существовать могут только в составе ядерных оболочек. Однако их частоты и соответствующие размеры существенно выше и меньше названных. Пары из таких частиц, как и куперовские пары и пары электрон-позитронов, в свободном состоянии способны лишь образовывать нестабильные частицы с нулевым спином и суммарным зарядом гравитационного потенциала – массой покоя мезонов. Это и есть микрочастицы со структурой гравиэлектромагнитных диполей.

Заряженные мезоны – это остатки распадающихся внешних оболочек ядер, которые образованы парами с одинаковым зарядом соответствующих магнитных монополей, образующих структуру частицы с нулевым спином (фото 7, справа).

Внешние поля этих мезонов формируются также как и у электронов и мюонов. Масса-энергия этих мезонов в системе СИ равна соответственно 139,56 и 139,567 Мэв, соответственно, а размер фазового объёма (геометрической пространственной структуры внешних контуров) немного меньше размера мюонов и во много раз меньше соответствующего размера электронов.

Нейтральный (?-ноль) мезон имеет массу 134,96 Мэв и распадается за время 0,83 х 10 

с, превращаясь в два гамма кванта (фото 8) – акт аннигиляции пары.

Фото 8. Распады мезонов, слева нейтрального, справа заряженных.

Заряженные мезоны распадаются за время 2,6 х 10

с, превращаясь в одноименно заряженные мюоны и соответствующие нейтрино.

Непрерывное изменение параметров вещественной материи этих частиц происходит через соответствующие законы сохранения (сохранение средней энергии) при самоиндукции зарядов энергии из формы покоя (гравитационный) в форму замкнутого движения (магнитный) с построением волновода геометрической структуры (электрический). При этом имеется две возможности построения волноводов геометрической структуры частиц. Первая – разряд магнитного монополя с перезарядкой знака через посредство электрического монополя и последующим квантовым переходом в гравитационный монополь, который опять при разрядке регенерирует первичный магнитный, т.е. образуется замкнутый волновод ?-ноль мезона, как основа внутренних ядерных оболочек. Вторая – образование волновода заряженных мезонов из двух одинаковых по знаку магнитных монополей, объединённых в пары с противоположно направленными спинами по аналогии куперовских пар электронов, как основа внешних оболочек ядер. Этот процесс аналогичен для всех замкнутых вихронов и определяется только параметрами магнитного монополя – частота колебаний, значение заряда, степень поляризации, время зарядки.

У каждого типа частиц по САП есть античастица[21 - В реальном представлении у каждой микрочастицы должна существовать частица с противоположным зарядом электрическим потенциалом.]. Обычно это отдельная частица, но бывает и так, что античастица и частица – это одно и то же. Только частицы, удовлетворяющие определённым условиям (к примеру, электрически нейтральные) могут быть античастицами сами себе. Фотон, как и нейтрон, является одновременно и античастицей по отношению к себе. У некоторых других частиц есть отдельные античастицы, обладающие той же массой, но противоположным электрическим зарядом. Нейтральные мезоны – примеры электрически нейтральной частицы, являющейся античастицей самой себе.

Следует особо отметить, что рождение пар мюонов, позитронов и электронов одним гамма-квантом в поле атомного ядра и противоположные им реакция распада-деления ?-ноль мезона на два кванта, а также аннигиляции-дезинтегрции этих пар, однозначно определяют величины пороговых энергий материнских квантов.

Механизм индукции массы и спина.

У ?-мезонов, в отличие от электронов и мюонов, гравитационный монополь и его внешнее поле, как заряд массы в СИ, суммируется из двух независимых, но электрически связанных волноводов гравпотенциалов двух замкнутых оболочек – двухконтурный с активированной структурой гравиэлектромагнитного диполя. Спины источников движения складываясь по знаку определяют целочисленный спин мезона. Периодически обновляемый волновод из гравпотенциалов, также как и волновод из электропотенциалов, во внешнем поле формирует гравитационное поле с отрицательной массой, противоположной по знаку центральному гравитационному полю Земли.

К-ноль и К-плюс мезоны (или каоны) также нестабильны, имеют спин равный нулю. Масса этих мезонов равна в системе СИ соответственно 497,67 Мэв и 493,667 Мэв. Структура фазового пространства аналогична ?-ноль и ?-плюс мезонам, только частота вихронов в них в несколько раз больше, а размер в соответствующее число раз меньше.

В настоящее время большое внимание привлекают на себя осцилляции друг в друга античастиц. Осцилляции элементарных частиц – это периодический процесс превращения частиц определённой совокупности друг в друга. Первый и наиболее хорошо изученный пример осцилляций обнаружен в системе нейтральных К-мезонов. Теоретическое предсказание и обсуждение экспериментальных следствий осцилляций были даны А. Пайсом (A. Pais) и О. Пиччони (О. Piccioni) в 1955 (эффект Пайса – Пиччони, обнаруженный и исследованный в 1957 – 61).

По данному представлению структуры фазового объёма К-ноль мезона, его загадочность превращений, как и все явления слабых взаимодействий обусловлены делением или слиянием в вихронах магнитных монополей при определённых условиях окружающих полей. А внешнее проявление этих внутренних трансформаций вихронов соответствует распаду элементарных частиц, делению или слиянию ядер. Поэтому при распаде К-ноль мезона, состоящего из двух противоположных частиц, возможны моды распада не только на два и три ?-ноль мезона, но и на большее количество других каналов: мезонно-мюонный, мезонно-электронный и т. д.

По физической природе, названные мезоны являются лишь разрешенными нестабильными фазовыми состояниями замкнутых волноводов, которые еще способны формировать изменяющиеся вихроны, но которые уже не способны создать стабильные фазовые микропространства электромагнитных потенциалов после ядерного взаимодействия протона с каким-либо ядром атома газового вещества атмосферы. Другими словами – это квантовые промежуточные состояния после взаимодействий магнитных монополей с окружающими полями.

Холодный ядерный распад-синтез[22 - http://www.youtube.com/watch?v=fWtVxXjQaKI (http://www.youtube.com/watch?v=fWtVxXjQaKI). ХЯС, часть 3. Свойства тяжёлых магнитных зарядов.] происходит через посредство ионизации зоной холодной плазмы заряженных частиц типа мюонов с внешних оболочек ядер, закреплённых в узлах кристаллической решётки твёрдого тела, по аналогии ионизации электронов с внешних оболочек атома. Такие фотоядерные и фононно-ядерные реакции происходят под воздействием «тяжёлых» СВЧ вихронов, способных создавать «вилки» поглощения с рождением гиперзвука (длина волны 10—100 микрон, частоты от 3 х 10

до 3 х 10

Ггц высокой плотности зарядки волноводов, «тяжёлые» магнитные и гравитационные монополи) на атомные и ядерные внешние оболочки с рождением свободных электронов и резонансных заряженных ядерных частиц со спином ?. Эти процессы происходят, как с помощью свободных, так и замкнутых макровихронов в зависимости от значений магнитного и гравитационного монополя, его частоты и плотности заселения зёрен-потенциалов на спиралях волноводов, т.е. «тяжести» фотона или фонона. Если вихрон свободный, а его магнитный монополь достаточно «тяжёлый», то ионизация электронов и возбуждение ядерных частиц (назовём их условно «мюонами») производится как при разрядке, так и при зарядке. Об этом свидетельствуют результаты М. И. Солина в его реакторе по исследованиям химических элементов на волноводах в затвердевшем цирконии. Если в решётке твёрдого тела имеются неоднородности с образованием соразмерных объёмных электрических зарядов, то некоторые вихроны своим соответствующим электромонополем захватываются этим объёмом, магнитный монополь делится на два и образуется пара связанно-замкнутых вихронов со спином ?, но взаимодействующих друг с другом (микрошар шаровой молнии, шаровый разряд), образуя одно целое. В фазовом объёме этих связанных друг с другом вихронов магнитные монополи регенерируются гравитационными, рождающие источники гиперзвука. Магнитные монополи при зарядке и гравитационные монополи при разрядке создают замкнутые волноводы, при этом путём кумулятивной имплозии волноводов переносят вглубь ядер атомов вещества кластеры зерен-электропотенциалов и гравпотенциалов, способных создать зону холодной плазмы, изменить электрическое поле и ионизировать частицы с оболочек ядра. Таким образом они «перемалывают» весь свой переменный фазовый объём вещества вдоль волноводов увеличивающегося диаметра, порождая электроны и «мюоны», которые, в свою очередь, создают новый состав ядерно-мезонной плазмы и вихревые токи электронов, изменяют первичный химический состав вещества посредством преобразования первичных атомных ядер, переводя их в другие нейтрально или отрицательно заряженные ядра. В последующих процессах релаксации за ядерное время происходят распад нейтральных и ионные ядерные реакции с положительно заряженными ядрами, что и приводит к трансмутации первичного вещества. Магнитный монополь расходует на это свой запас энергии и постепенно увеличивается в размерах до тех пор пока полностью не исчезнет. За это время он более миллиона раз переходит в гравитационный монополь, который через посредство волноводов гиперзвука и соответствующих вихревых токов вдоль них разносит энергию магнитного монополя по всему объёму кластера вещества – эффект аналогичный подогреву еды в микроволновой бытовой печке. Процесс изменения химического состава вещества имеет несколько каналов. Один из каналов прямой – ионизация внешней оболочки ядра с соответствующим уменьшением его заряда и массы. Второй резонансный захват освободившейся ядерной частицы с этой оболочки соседним ядром атома с соответственным увеличением его заряда и массы. Третий при воздействии «странного» излучения рождает отрицательно заряженные атомные ядра, приводящим к последующим ядерно-ионным реакциям. В последнем случае создаются ядра сверхтяжёлых атомов. В этих процессах выделяется большое количество дополнительной свободной энергии за счёт изменения внутренней энергии кластера вещества, заполняющего весь его объём. Время, за которое происходят эти процессы характерно для атомных и ядерных реакций и составляет от 10

для атомных до 10

секунды для ядерных преобразований. Эти процессы подтверждают взрывы электрода-проволочки в реакторе С. В. Адаменко с рождением самородков железа в кристаллической решётке меди (анода), окружённого в разрыве анода тонким слоем образовавшегося цинка, а также с образованием других сверхтяжёлых элементов, соответствующих спектру распространённости химических элементов в нашей Галактике (фото 1). Чем больше по значению энергии магнитный монополь, т.е. чем больше его частота, тем более глубокие ядерные оболочки доступны для ионизации, т.е. оболочки со структурой подобной от ?-мезонов, K-, D-, F- до B-мезонов. Ионизированные нейтральные «мезоны» с этих оболочек поглощаются на соседних ядрах (простейшие ядерно-ионные реакции), увеличивая их атомный вес и изменяя изотопный состав ядер, а заряженные «мюоны-мезоны» с внешних оболочек резонансно прилипают-оседают на внешние оболочки ближайших в окружении первичных ядер – ядра меди становятся ядрами цинка. Соответственно, остов от ядер меди, с которых были ионизированы эти «мюоны-мезоны», превращаются в ядра железа. При этом, чем тяжелее первичное ядро конвертера, тем больше его внешний размер – тем эффективней идут фотоядерные реакции ионизации частиц с внешних оболочек и требуется меньшая пороговая энергия их «поджигания». В результате этого процесса во внешней цепи генерируются дополнительные электрические токи, выделяется термическое тепло и изменяется ядерный состав первичного конвертера без внешней радиации, т.е. продукты находятся в стабильном состоянии. Если ячейка, в которой происходит этот процесс, находится в твёрдом агрегатном состоянии, то очень быстро наступает изменение её химического состава и разрушение. Как, следствие, процесс прекращается. Чтобы «приручить» выделяемую энергию, можно использовать в такой ячейке жидкий подвижно-проточный конвертер, тогда сразу будут решаться несколько задач:

– непрерывность процесса,

– отвод тепла,

– захват и отвод электрического тока электронов, наведенного как во вторичной обмотке трансформатора (индуктивный метод), так и во внешней цепи,

– отвод продуктов наработки новых ядер с возможностью фильтрации, селекции и кольцевания этого контура,

– переработка жидких радиоактивных отходов с АЭС.

ХЯС – LENR – СВАУШК резко отличается от мюонного катализа тем, что нет необходимости в энергозатратах на производство потока «мюонов», а ядерные продукты практически сразу образуются в стабильном состоянии, ионизованные частицы с ядерных оболочек конвертеров становятся строительным материалом для надстройки соседних внешних оболочек стабильных новых ядер. Освободившиеся электроны способны захватываться специальными схемами во внешних цепях, преобразовываются в дополнительный ток и выводятся в полезную нагрузку. Движущийся заряженный электрически поток жидкого конвертера в целом ещё создаёт и ток индукции, как первичный ток в обмотке трансформатора. Остаётся только снимать ток во вторичной его обмотке для внешнего питания бытовых приборов.

1.2. Аннигиляция нуклонов

Аннигиляция корпускулярных частиц структурированной материи – это обратный процесс рождения нейтронов. По этому процессу можно судить о пути, пороговой энергии фотонов и условиях рождения нейтронов и других типа альфа-частиц.

Нейтрон, протон, дейтрон и «античастицы»
<< 1 2 3 4 5 6 7 >>
На страницу:
5 из 7