Оценить:
 Рейтинг: 0

Основы теории искусственных нейронных сетей

<< 1 2 3 4 5 >>
На страницу:
3 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля
В то же время в Киото (Япония) состоялась международная конференция по компьютерам пятого поколения, которые должны были быть построены на основе искусственного интеллекта. Американские периодические издания подняли эту историю, акцентируя, что США могут остаться позади, что привело к росту финансирования в области нейросетей.

С 1985 г. Американский Институт Физики начал ежегодные встречи – «Нейронные сети для вычислений».

1990 г. – Департамент программ инновационных исследований защиты малого бизнеса назвал 16 основных и 13 дополнительных тем, в которых возможно использование нейронных сетей.

Сегодня обсуждения нейронных сетей происходят везде. Перспектива их использования кажется довольно яркой в свете решения нетрадиционных проблем и является ключом к целой технологии. Исследования направлены на программные и аппаратные реализации нейросетей. Компании работают над созданием трех типов нейрочипов: цифровых, аналоговых и оптических, которые обещают появиться в близком будущем.

В XXI веке усилилось внимание к аналогии с мозгом. Точная работа мозга человека – все еще тайна. Тем не менее некоторые аспекты работы этого удивительного процессора известны. Базовым элементом мозга человека являются специфические клетки, известные как нейроны, способные думать и применять предыдущий опыт к каждому действию, что отличает их от остальных клеток тела.

Кора головного мозга человека является плоской, образованной из нейронов поверхностью, толщиной от 2 до 3 мм площадью около 2200 см

. Кора головного мозга содержит около 10

 нейронов. Каждый нейрон связан с 10

 – 10

 другими нейронами. В целом мозг человека имеет приблизительно от 10

 до 10

 взаимосвязей.

Сила человеческого ума зависит от числа базовых компонент, многообразия соединений между ними, а также от обучения.

Индивидуальный нейрон является сложным, имеет свои составляющие, подсистемы и механизмы управления и передает информацию через большое количество электрохимических связей. Насчитывают около сотни разных типов нейронов. Вместе нейроны и соединения между ними при работе формируют процесс, отличающийся от процесса вычислений традиционных компьютеров. Искусственные нейросети моделируют лишь главнейшие элементы сложного мозга.

В СССР до 1970-х годов все исследования ИИ велись в рамках кибернетики. По мнению Д. А. Поспелова, науки «информатика» и «кибернетика» были в это время смешаны по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики. При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950х – начала 1960х годов.

В России 30 мая 2019 г. на совещании по развитию цифровой экономики под председательством В. В. Путина было принято решение о подготовке национальной стратегии Российской Федерации по искусственному интеллекту. В её рамках готовится федеральная программа.

11 октября 2019 г. В. В. Путин своим указом утвердил национальную стратегию развития искусственного интеллекта в России до 2030 года.

Нейросетевые уровни моделирования

Структурный подход к моделированию мозга реализуется на нескольких уровнях (этапах).

– Вначале создается информационная модель отдельной нервной клетки – искусственного нейрона (ИН), что составляет первый уровень нейронного моделирования.

– Ограниченное число ИН далее могут структурироваться в жесткие необучаемые конфигурации – искусственные нейронные ансамбли (ИНА), что составляет второй уровень нейронного моделирования. В их состав входят ИНА, реализующие функции

– выбора максимального или минимального входного сигнала,

– оценки эквивалентности (равенства) входных сигналов,

– классификации

– ранжирования (сортировки),

– и др.

– Наконец, создаются конфигурации из большого числа ИН, которые с помощью специальной процедуры обучения могут гибко изменять свои параметры. Такие конфигурации называются искусственными нейронными сетями (ИНС). Они составляют третий уровень нейронного моделирования.

– На четвёртом уровне создаются комплексы, содержащие большое количество нейронных сетей различного назначения и оформляются в виде нейросетевых моделей, систем управления, вплоть до нейрокомпьютеров.

Нейроны

На первом уровне нейронного моделирования обычно действуют модели искусственных нейронов следующих типов:

– формальный нейрон

– нейрон МакКаллока-Питтса

– сигмоидальный нейрон

– нейрон типа «адалайн»

– паде-нейрон

– нейрон Хебба

– нейроны типа WTA (Winner Takes All – «Победитель получает все»)

– и др.

В каждом нейропакете используются свои модели нейронов, различающиеся своими свойствами (Properties).

Мы будем рассматривать модели нейронов, используемых в трёх нейропакетах [3, 4, 5]:

– Sharky Neural Network – это freeware компьютерная программа фирмы SharkTime Software (http://www.sharktime.com) для игровой демонстрации возможностей нейросетевого классификатора. Программа freeware, работает под ОС Windows различных версий. Адрес для загрузки: http://www.sharktime.com/

– Нейросимулятор Пермской школы Искусственного Интеллекта —программа, предназначенная для проектирования, обучения, тестирования и использования нейронных сетей. Программа freeware, работает под Windows разных моделей. Её адрес

http://www.lbai.ru/.

– Универсальный нейропакет MemBrain – мощный графический нейросетевой редактор-имитатор для Microsoft Windows, поддерживающий искусственные нейросети произвольного размера и архитектуры (программа freeware). Её адрес:

http://www.membrain-nn.de/english/download_en.htm.

Биоподобные модели нейронов

В https://ailab.ru/ Александр Бахшиев описал Концепцию применения биоподобных моделей нейронов для управления робототехническими системами.

Для исследований в нейрофизилогии более подходят модели, основанные на описании функционирования ионных каналов, такие, как нейрон со структурной организацией мембраны, с раздельным вычислением вкладов в мембранный потенциал, при отказе от явного задания пороговой функции.

С их помощью проводятся исследования типа:

«Информационная модель волновой активности мозга» или

<< 1 2 3 4 5 >>
На страницу:
3 из 5