Оценить:
 Рейтинг: 0

Технология интеллектуального образования: научные основы. Монография

Год написания книги
2017
<< 1 ... 4 5 6 7 8
На страницу:
8 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Однако проблемные ситуации, с которыми мы сталкиваемся, чрезвычайно редко могут быть описаны простейшими моделями, для которых справедливы законы. Поэтому для решения задач, приближенных к реальным условиям, необходимо вывести следствие из закона, учитывающее усложнение модели. Важно понимание того обстоятельства, что закон устанавливается строго в результате описанной выше последовательности действий. Следствие же из закона всегда является нашим домыслом и нуждается в проверке все новыми и новыми решениями задач.

Задача решается на основании закона или следствия из него. Решается, как уже было сказано выше, сознательно, неотвратимо и безошибочно.

Но в структуре научно-познавательной деятельности есть еще один, чрезвычайно важный, элемент. По окончании описанного исследовательского цикла неизбежен переход к рассмотрению новых явлений. В частности, в связи с тем, что научное знание имеет принципиально уровневый характер, это может быть переход, связанный с новым, более высоким уровнем рассмотрения исходно выделенного из мира явления. Этот элемент структуры научно-познавательной деятельности лежит в основе идеи непрерывности образования.

Предложенная здесь процессуальная модель структуры научно-познавательной деятельности (рис. 3.2) является результатом рассмотрения большого числа ставших классическими научных работ. Ее адекватность проверить достаточно просто. Читателю предлагается (с учетом рассмотренного выше смысла и содержания элементов структуры):

а) обоснованно изъять какой-либо элемент предложенной структуры или ввести принципиально новый;

б) поменять два или несколько элементов местами в структуре.

Трудно предположить, что сначала надо установить закон, а затем решить, что же мы исследуем. Или: сначала решить задачу, а затем установить закон, на основе которого она должна решаться. Не менее трудно понять, как решать задачу, если неизвестен закон, описывающий рассматриваемый в ней процесс.

Из проведенного рассмотрения (отраженного также в работах [35, 40, 41]) видно, что структура научно-познавательной деятельности состоит из трех блоков, которым соответствуют требования Федерального государственного стандарта общего образования [24, С.15] в отношении компетенций и компетентностей, являющихся компонентами научно-познавательной компетентности:

• формирование понятийно обеспеченного языка научного описания изучаемого явления (этому блоку структуры рис. 3.2, состоящему из первых трех ее элементов, можно присвоить наименование «Язык»);

• установление интересующих исследователя причинно-следственных связей между явлениями (блок «Закон» – от «Измерения явления или свойства» до «Формулирования закона» в структуре рис. 3.2);

• решение задач, представляющих интерес для субъекта исследования (блок «Задача» – последние три элемента структуры рис. 3.2).

Таким образом, описанная выше структура научно-познавательной деятельности может быть схематически представлена в обобщенном («свернутом») виде как

3.2. Принципиально алгоритмизированный характер научно-познавательной деятельности

Фреймовое [8] представление структуры научно-познавательной деятельности на рис. 3.2 и в свернутом ее виде («язык» – «закон» – «задача») отражает последовательность шагов этой деятельности в процессе исследования. Такая последовательность устойчиво ассоциируется с алгоритмом деятельности. Однако практика научной и педагогической деятельности, а также анализ соответствующей литературы показывают, что обыденные представления об алгоритме и, следовательно, алгоритмизации той или иной деятельности, чаще всего недостаточны и неопределённы. Поэтому понимание, в частности, системности, целостности и устойчивости рассматриваемой структуры (рис. 3.2) бывает затруднено, что приводит к неаргументированным возражениям и проблемам с разработкой и внедрением в образовательный процесс соответствующих технологий. В связи с этим необходимо рассмотреть сущность алгоритмического компонента профессионального научного мышления, на котором и основана научно-познавательная деятельность.

Употребление термина «алгоритм» настолько прочно вошло в лексику субъектов организованных форм деятельности, что перечисление частных примеров не имеет смысла. В основном представление об алгоритмизации деятельности распространяется на работу по решению разного рода задач – учебных, образовательных, управленческих и т. д. (например, [1, 15]). При этом сложилось представление о множественности частных алгоритмов решения отдельных классов задач. Происхождение этих алгоритмов, как правило, достаточно туманно и носит характер субъективных предписаний. Последнее приводит к тому, что деятельность в соответствии с Алгоритмом воспринимается как исполнительская и репродуктивная. Чаще всего алгоритм решения задачи реализуется в скрытом виде, без упоминания процедуры алгоритмизации и указания четких последовательности и содержания шагов соответствующего алгоритма (например, [2, 10, 11, 19]). Это сообщает работам прецедентный характер и принципиально затрудняет трансляцию результата даже на сходные проблемные ситуации либо требует дополнительных усилий, направленных на формирование алгоритмизированного представления такого результата. Именно так были представлены результаты работ [2, 10, 11, 19] при их анализе в коллективной монографии [22]. Чрезвычайно важным является то обстоятельство, что в процессе трансляции знаний при обучении и образовании алгоритмизированные подходы не входят в число стандартизированных и устойчивых методических приемов, отраженных в общепринятых дидактических материалах, а проявляются в рамках личной инициативы отдельных педагогов и преподавателей, руководствующихся работами типа [15]. Именно это указывает на недостаточность и неопределенность представлений о роли алгоритмического подхода к формированию и трансляции знаний и умений.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 ... 4 5 6 7 8
На страницу:
8 из 8