Оценить:
 Рейтинг: 4.5

Вихроны. Иллюстрированное издание

Жанр
Год написания книги
2013
<< 1 ... 6 7 8 9 10 11 >>
На страницу:
10 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля

, как показывают геологические исследования механизма возникновения и движения плюмов[174 - Плюмы, всплывающие из ядра Земли – вещество нехимического состава, при ядерно-химическом превращении которых образуются его энергия движения, обычные вещества и газы, извергающиеся во время вулканической деятельности.] к поверхности Земли от границы ядра с мантией, а также происхождение некоторых пород и минералов, находящихся в приповерхностной континентальной коре, вихроны образуют иные микрочастицы и с иными свойствами. Да и сами известные нам процессы радиоактивного излучения и распада становятся другими в связи с отсутствием свободного пространства в мантии для создания тех или иных микрочастиц. При этом обычные химические реакции заменяются очень похожими[175 - В открытой литературе известные как трансмутация химических элементов.], но ядерными и ядерно-химическими превращениями, по типу мюонного катализа с образованием мюонных атомов или мезоатомов. Более того, известно, что такие явления низкоэнергетической трансформации[176 - Трансмутации ядер химических элементов, В. Ф. Балакирев, В. В. Крымский,(2003 г.), Гареев Ф. А. (2005 г.).] ядер химических элементов не имеют в настоящий момент в открытой литературе убедительных объяснений в рамках САП.

С точки зрения реального представления, для объяснения движения этих плюмов, а также ядерных превращений при образовании месторождений молибдена, урана в гранитах, гранита из базальтов и т. д., необходимо применять не протон-нейтронную модель ядра, а оболочечную на основе структур типа мезонов и мюонов, создаваемых микровихронами.

К другим свойствам вихрона относятся его бесконечное время жизни в вакууме космоса и ограничение скорости прямолинейного распространения пределом скорости света, обусловленное его собственным движением по спирали. Именно поэтому скорость света не зависит от скорости движения источника излучения.

Ядерные и атомные замкнутые вихроны с массой имеют вид движения по замкнутым волноводам в корне отличный от движения оптических микровихронов по волноводам фотонов и очень дискретный спектр конкретных резонансных частот, при которых возможно образование и стабильно долгая жизнь атомов, ядер химических элементов и электронов, т. е. стабильных микрочастиц. Макровихроны СВЧ диапазона с существенным значением магнитного заряда, в отличие от высокочастотных оптических и других жестких квантов, при прохождении через вещество имеют в своём фазовом объёме очень большое количество атомов и молекул, а поэтому способны их возбудить или даже ионизировать, а также частично распаковать внешние оболочки некоторых атомных ядер.

Частота обращений магнитного монополя по спиралям, образующих фазовый объём атомного фотона или замкнутой микрочастицы зависит от диаметра сферы и скорости изменения поля, в котором зародился этот монополь. Частота смены полярности монополя на противоположный при его разрядке определяет половину длину волны кванта. Его энергия численно равна постоянной Планка, делённой на 2? и время формирования кванта электромагнитного поля или время его излучения. Косвенно, его внешние свойства проявляются во всех элементарных частицах в виде спина, массы, зарядов, а также в характерных ядерных взаимодействиях и т. д. Размер и масса микрочастиц напрямую связана с числом вихронов в ней и значением величины их энергии. Все известные взаимодействия микрочастиц обусловлены свойствами вихронов и тех фазовых объёмов, которые они построили и в которых сами живут. При различных взаимодействиях они ведут себя весьма пластично, объединяясь с другими вихронами по вертикали и горизонтали, путём захватных и фокусирующих внешних магнитных полей с образованием концентрически вложенных друг в друга замкнутых волноводов, образованных разными по энергии резонансными вихронами. Они легко изменяют форму волноводов из замкнутых в свободные в отсутствие внешних запирающих полей, например, аннигиляции микрочастиц. И при этом также легко меняют свои внутренние параметры такие, как тип полярности, направление оси вращения, тип поляризации и частоту колебаний. Формируя волновод фотона при своём движении-разряде, свободный магнитный монополь весь свой заряд на ? длины волны превращает в электропотенциалы и противоположный магнитный монополь. В то время, как замкнутый магнитный монополь в своём движении-заряде в элементарной частице, исчезая на мгновение, превращается в гравитационный векторный заряд. Так происходит замена свободного движения магнитного монополя на замкнутое движение с рождением массы. И наоборот, замена кинетического движения массовой частицы на свободное движение фотонов со скоростю света – поток высокоэнергетических электронов при торможении-поглощении неподвижной мишенью из тяжёлых элементов генерирует поток рентгеновских лучей.

Таким образом, свободные биполярные вихроны образуют стабильные фотоны электромагнитных квантов со спином равным единице. Вихроны фотонов с энергией выше 1022 Кэв способны захватываться полем атомного ядра и делится на два полярных замкнутых и противоположных вихрона, которые рождают стабильные электрон и позитрон со спином ?. Более высокочастотные фотоны в поле ядра создают замкнутые однополярные вихроны, но производящие уже нестабильные мюоны со спином ?. При аннигиляции противоположных частиц, в частности, протонов и антипротонов[177 - При такой аннигиляции также идет последовательная распаковка внешних оболочек протонов.], появляются короткоживущие нейтральные и заряженные мезоны с целочисленным спином, оболочки которых составленны из противоположных заряженных частиц со спином ?. Несколько разных по частоте резонансно-замкнутых биполярных ядерных оболочек при определённых условиях проявляют способность к концентрическому слиянию с образованием вложенных в друг друга биполярных оболочек нейтронов и антинейтронов, протонов и антипротонов и других ядер известных химических элементов. Разнообразие вихронов такое же, каково разнообразие форм атомно-молекулярного вещества.

Вихроны могут рождаться не только в переменном электрическом поле стационарных зарядов, когда один из зарядов начинает движение на сближение. Этот процесс возможен и в переменном магнитном поле в момент разрядки через посредство первично-рождённого электромонополя. Кроме того, если имеются условия длительного вращения нейтрального или магнитозаряженного кластера (газового, жидкого, твёрдого или фазы агрегатного состояния материи в форме ЧСТ) материи вокруг собственной и стационарной оси, атомно-молекулярное вещество в таком кластере, как и при производстве магнитов, способно поляризоваться с образованием собственных векторных монополей всех трёх видов – электрического, магнитного и гравитационного. Однако эти монополи будут жёстко связаны с источником, и поэтому названы связанными с массой макровихронами. Этот процесс обнаружен при вращении кластеров твёрдых тел, магнитных тел, а также при вращении ядер пульсаров. В последнем случае ядра ЧСТ рождают связанные переменные гипервихроны, которые аналогично замкнутым вихронам[178 - Отличие связанных с массой вихронов от замкнутых микровихронов заключается в том, что они способны также порождать ещё и мощное переменное электрическое поле.], способны рождать (инверсия магнитных полюсов звёзд и активных планет) переменные противоположные магнитные монополи, на переходных участках диполи и квадруполи, а также дополнительные векторные гравитационные и электрические монополи.

Итак, электромагнитные вихроны – это микровихроны, макровихроны и гипервихроны, в свободной, замкнутой или связанной форме, энергетически лёгкие атомные или «тяжёлые», отягощённые плотностью зёрен-потенциалов их волноводов, со спином полной или частично-квантовой завершённостью волновых процессов. Магнитные заряды в свободных вихронах превращаются при разрядке в противоположные через посредство противодействующих им электрических монополей. Последние способны, взаимодействуя с внешним электрическим полем, затормозить и остановить магнитный с квантовым переходом его в гравитационный монополь, образовав тем самым пару замкнутых и противоположных вихронов той или иной корпускулярной микрочастицы с полуцелым спином. В атомных микровихронах этот процесс отражает физический смысл постоянной Планка. Магнитные заряды в них могут иметь широкий диапазон от элементарного до максимальных планковских значений величины энергии. «Тяжёлые» вихроны от СВЧ до ИК-диапазона при взаимодействии с веществом способны создавать связанно-замкнутые микровихроны[179 - По типу зарядовых кластеров К. Шоулдерса.] – в их фазовых обёмах находится большое количество атомно-молекулярного вещества. Вихроны могут взаимодействовать с внешними электрическими и гравитационными полями, а также с плазмой атомно-молекулярного вещества во всех её агрегатных состояниях, видоизменяясь, нагревая и изменяя атомный и ядерный состав окружающего вещества.

2.2.2 Тепловые и звуковые микровихроны

Взаимодействие ЭМВ с веществом. Явление теплового эффекта[180 - Увеличение или уменьшение, т. е. изменение температуры кластера вещества.] при воздействии инфракрасного (ИК) излучения на вещество было впервые обнаружено Уильямом Гершелем. Это эффект прямого преобразования энергии электромагнитных микровихронов в механическое колебательно-вращательное движение[181 - Этот процесс аккумулирует и определяет одну из частей внутренней энергии вещества в форме вращательно-колебательной энергии атомов и молекул. Ещё имеется внутренняя энергия, запасённая в оболочках атомов и их ядер.] молекул или атомов вещества, т. е. механическое[182 - Механическое движение – это кинетическое и центробежное движение кластера масс.] движение микрочастиц, обладающих массой, и, как следствие, рождение гиперзвука с частотами от 10

до 10

Гц, т. е. поток фононов и ротонов. Такое механическое движение в веществе характеризует его температуру и взаимодействие фононов с его электронами проводимости. Обратный эффект изменения состояния – нагревание кластеров вещества[183 - Около 50 % солнечной энергии излучается в ИК-диапазоне. Дистанционное управление телевизором производят пультами, излучающими ИК-излучение.], молекулы которых начинают двигаться более интенсивно, чем при нормальных условиях, приводит к излучению электромагнитных фотонов в этом же ИК-диапазоне 3 х 10

– 3 х 10

Гц, т. е. с длиной волны от одного миллиметра до одного микрона, охватывая при этом, от 10

до 10

атомных слоёв в жидкости или твёрдом теле. Возможен и третий эффект – охлаждение вещества при производстве электрического тока в устройстве Свита Флойда, но тока со странным и противоположным свойством при коротком замыкании не плавить место контакта, а превращать его в иней. Аналогичный эффект наблюдается и в эффекте Пельтье, в котором при переходе контакта электроны проводимости передают избыточную энергию колебательно-вращательным движениям атомов в кристаллической решётке проводника, нагревая его или охлаждая, поглощая эту энергию.

Механизм воздействия источников, приводящих во вращение атомы и молекулы в веществе в САП неизвестен. Из анализа резонансных тепловых, электрических и ядерных эффектов, возникающих при прохождении лёгких и «тяжёлых» микровихронов ИК-излучения через вещество следует, что физическим механизмом фотон-фононого преобразования является частотный резонанс электромонополей микровихронов и его волноводов с электрическими полями атомов и молекул при прохождении магнитных зарядов в фазовом объёме вихронов вблизи узлов волн, а также магнитной раскрутки кластеров атомов магнитными зарядами, находящимися в фазе уже ближе к пучности волны. Магнитные заряды их фазовых объёмов, взаимодействуя при самовращательном движении с магнитными зарядами (магнонами) кластера частиц, составляющих из атомов и молекул сферические слои этого кластера, приводят во вращательное движение не только эти слои с количеством от 10

до 10

. Когда магнитные монополи названных микровихронов проходят узлы волноводов, где заряд максимален, а размер может быть гораздо меньше даже размера атомных ядер, их электромонополи уже способны раскручивать и отдельные атомы, ионизировать их и их атомные ядра, увеличивая в целом внутреннюю энергию, линейные и объёмные размеры кластера вещества. Вдоль созданных ими волноводов возникают вихревые электрические токи и изменяется его первичный химический состав. Другими словами, увеличение внутренней энергии вещества и изменение его первичного химического состава происходит за счёт привнесения энергии электромагнитными микровихронами путём вращательно-струйнойимплозии[184 - Такой же механизм воздействия на плазму твёрдого тела наблюдается при ионизации атомных электронов и частиц с внешних ядерных оболочек, приводящий к вихревым токам в проводниках и изменению первичного химического состава вещества (LENR).] их магнитных зарядов и установки ими соответствующих волноводов. В процессе механической раскрутки микрочастиц с массой начинают заряжаться гравитационные монополи, которые при разрядке порождают звуковые фононы и ротоны гиперзвука. Если гравитационные монополи достаточно «тяжелы», то в процессе их разрядки образуются очень «плотные» гравитационные потенциалы, уже способные создавать вихревые токи из электронов проводимости. Таким образом гиперзвук способен рождать электрический ток, но производимый не электропотенциалами, а гравпотенциалами, что и наблюдается в устройстве С. Флойда.

Пример обратного фонон-фотонного взаимодействия гиперзвука со светом заключается в изменении показателя преломления ЭМВ под действием резонансной волны – дифракция света на ультразвуке.

Таким образом существует прямые квантовые переходы резонансных взаимодействий между электромагнитными и механическими микровихронами – определим такие переходы как двадцать четвёртое свойство электромагнитных вихронов.

Итак, изменение внутренней энергии одного атома порождает или поглощает фотон, а изменение внутренней энергии коллектива атомов кластера вещества порождает или поглощает кванты звука. Если этот коллектив атомов по массе превосходит значение планковской массы (2,2 х 10

г), то гравитационные взаимодействия и квантовые явления начинают превалировать над электромагнитными. К таким изменениям может приводить поглощение энергии ИК-излучения веществом, механический удар, электрический разряд, локальный термический нагрев кластера вещества, детонация и взрыв химического или ядерного заряда и т. д. Например, тепловой нагрев кластера кристалла твёрдого тела, увеличивает среднее межатомное расстояние в этом кластере и порождает такие явления, как увеличение его объёма и теплопроводность, которое осуществляется посредством фононов, способных с помощью вихревых токов атомов, возникающих на волноводах из гравпотенциалов после разряда гравитационного монополя, переносить энергию состояния[185 - Очень важно – перенос состояния корпускулярного вещества с помощью механических волн из одного региона в другой. Этот процесс необходимо учитывать при исследовании «дыр» на поверхности Земли, обусловленных переносом состояния материи в мантии к поверхности коры путём мощных механических вихронов, рождаемых взрывом.] нагрева от одного кластера к другому. При этом главную роль играет длина свободного пробега при колебаниях[186 - Линейных или вращательных.] атома вблизи положения равновесия. Это явление и есть самое элементарное и самое высокочастотное проявление звука, т. е. гиперзвука, так как его верхняя граница длины волны может быть только больше удвоенного межатомного расстояния и соответствует частоте 10

Гц. При этом следует отметить, что амплитуда колебаний атомов существенно меньше их межатомного расстояния. Область звуковых частот снизу неограниченна – в природе встречаются ифразвуковые колебания с частотой в сотые и тысячные доли герц. Частотный диапазон гиперзвуковых волн имеет ограничения, вызванное атомным и молекулярным строением среды. В газах длина волны может быть только больше длины свободного пробега молекул. Поэтому верхняя граница гиперзвука в газе 10

Гц.

Основное свойство звука, распространяющегося в какой-либо среде вещества – это перенос энергии[187 - Здесь имеется ввиду различные формы энергии, обусловленные состоянием вещественной материи источника, в том числе механическое и магнитное давление, плотность, температура, спин и т. д.] звуковой волны посредством механического состояния атомов. Заметим, что в ЭМВ перенос энергии происходит за счёт самодвижения переменного магнитного заряда, не имеющего массы.

Как происходит этот перенос или как происходит самодвижение звука?

Здесь уже уместно заметить, что источника самодвижения, порождающего структуры механического «фотона»-кванта[188 - Элементарные проявления механических квантов – это фононы и ротоны.] звуковых волн, как и механизма его самодвижения в САП, автором в открытой литературе данных не обнаружено, как это положение существует и со структурой электромагнитного фотона. Другими словами, на микроскопическом уровне физический механизм распространения звука неизвестен. Законы распространение звуковых волн определены лишь на основе экспериментальных данных и носят, исключительно математически феноменологический характер.

Источниками квантов звука могут быть, как и при рождении фотонов, быстрое изменение энергетического состояния атомов, в данном случае, механического состояния коллектива атомов, образующих связанную систему масс. Механизм распространения звука – зарядка потока гравитационных монополей. Из анализа воздействия ИК-излучения на атомы, исследований механизма электрогидравлического разряда Л. А. Юткина, механического удара по твёрдому телу, детонации и последующего взрыва, следует, что всегда вынужденное изменение состояния поступательно-вращательного движения кластера вещества даже на пределе длины свободного пробега атомов при колебательно-вращательном движении их около положения равновесия в веществе индуктирует пакет гравитационных монополей. Это аналог индукции магнитного монополя в изменяющемся электрическом поле, т. е. в механически возмущённом пространстве покоящейся атомно-молекулярной среды. Такое пространство-среда должно состоять из подвижных микрочастиц с массой – атомы, молекулы, ионы, электроны и т. д. Например, при механическом ударе по кластеру твёрдого тела, т. е. в связанной системе масс, в его пространстве приходят в движение атомы, сохраняя своё инертное состояние покоя. Это движение сложное и состоит из механических колебательно-вращательных движений атомов около положения равновесия и их вынуждено-возмущённого путём удара поступательного движения из состояния инертного покоя. Такое синфазное движение коллектива атомов приводит к зарядке потока микросфер из потенциалов гравитационных монополей, т. е. носителей квантов индуктированной энергии – кластеров вихревых полей. Сливаясь в один, они уже образуют суммарный гравитационный заряд со структурой (фиг.2.1) подобной структуре магнитного монополя. Далее следует разрядка этого монополя в пространстве кластера с производством волноводов из гравпотенциалов – с этого момента начинается жизнь механического микровихрона. После чего, вдоль них синфазно возникают вихревые токи атомов, которые квантовано переносят соответствующую энергию материи в различной форме (давление, плотность, температуру и т. д.) и они же регенерируют-заряжают новый коллектив противоположных по знаку гравмонополей впереди на ? длины волны и на новом месте. При этом скорость распространения звука уже определяется продольной составляющей винтового движения атомов вдоль потенциалов волновода и соизмерима с их тепловой скоростью. Синфазное движение атомов приводит к созданию фронта звуковой волны. Это и есть ответ на вопрос – зачем нужна среда для распространения звука и чем обусловлена скорость звука в ней? При распространении звука в среде индуктированные гравмонополи меняются по знаку последующими вихревыми токами микрочастиц вдоль потенциалов волноводов – этим обеспечивается полное квантовое преобразование индуктированной в гравмонополе энергии при сохранении средней.

Термические колебания атомов кристалла вызывают распространение в веществе системы звуковых волн, квантами которых являются фононы. Фононы и их взаимодействия с электронами играют фундаментальную роль в современных представлениях по физике сверхпроводников, процессах теплопроводности, процессах рассеяния в твердых телах. Законы распространения волн – дифракция, интерференция, отражение, преломление одинаковы и для электромагнитных волн и для звука. Однако есть отличия в потенциалах на волноводах и скоростях распространения звука и света. Электромагнитные вихроны устанавливают электрические потенциалы, которые вызывают вихревые электрические токи в проводниках, а механические – гравитационные потенциалы, которые вызывают вихревые токи микрочастиц с массой и формируют тем самым фронты давления и скорости их движения, а также, в некоторых случаях, – вихревые токи ионов и электронов. Поэтому при распространении звуковой волны происходит следующее:

– на расстоянии в полволны амплитудное значение давления из положительного становится отрицательным, т. е. разница давлений в двух точках, отстоящих друг от друга на полволны пути распространения волны, превышает в два раза.

– давление, оказываемое на частицы среды при распространении волны, является результатом действия вихревых токов вдоль потенциалов волновода.

– частицы среды, участвующие в вихревых токах при передаче энергии волны и электрического заряда, колеблются около положения своего равновесия.

На основании этого можно сделать заключение о том, что при переносе энергии звука происходит полное квантовое преобразование энергии вихревой материи микрочастиц с массой в этих волновых процессах, т. е. данный механический микровихрон является свободным.

Взаимодействие света со звуком (и наоборот) используется в современной оптике, оптоэлектронике, лазерной технике для управления когерентным световым излучением. Акустооптические устройства позволяют управлять амплитудой, частотой, поляризацией, спектральным составом светового сигнала и направлением распространения светового луча. Из прикладных аспектов акустооптических эффектов практическое применение имеют системы обработки информации, где акустооптические устройства используются для обработки СВЧ-сигналов в реальном масштабе времени.

Фононы и ротоны – элементарные высокочастотные проявления механических вихронов. Физический смысл появления ротонов соответствует появлению вихревого движения микрокластера в сверхпроводящей жидкости. Энергетический спектр элементарных возбуждений в жидком гелии имеет линейную зависимость в начальной части. Локальный минимум энергии соответствует температуре около 8,6 K. Элементарные возбуждения линейной части спектра соответствуют рождению фононов, а возбуждения в области, близкой к минимуму – рождению ротонов. Они тесно связаны с электромагнитными фотонами и электронами среды. Фононы взаимодействуют не только друг с другом, но и с другими квазичастицами, как с электронами проводимости в металлах и полупроводниках, так и с магнонами в магнито-упорядоченных средах. Испускание и поглощение фононов электронами – основной механизм электрического сопротивления металлов и полупроводников.

2.3 Электрон – позитрон

Скажи мне, что такое электрон,

и я объясню тебе всё остальное.

В. Томсон

Электрон, как замкнутое, а поэтому инертное и стабильное микропространство, обладает структурой, внутренними и внешними физическими свойствами. Его комптоновская длина[189 - Это размер области, когда частица перестаёт проявлять себя как материальная точка, и в таких взаимодействиях уже начинают проявляться некоторые структурные свойства.] волны составляет величину 2,4 х 10

см. Дебройлевская[190 - Формальное определение комптоновской и дебройлевской длины волны одинаково, но в первом случае используется скорость света, взаимодействующих гамма-квантов с электронами, а во втором – реальная скорость движения электрона относительно ядра при которой возможно формирование атома.] длина волны электрона в атоме (т. е. размер сферической области, в которой электрон, будучи связан электрическим полем ядра, уже перестаёт существовать со свойствами свободного электрона) в нормальных условиях рекомбинационного теплового равновесия составляет величину 10

– 10

см, а в условиях вакуума космоса в областях с температурой близкой к абсолютному нулю приближается к 10

– 10

см. Таким образом, высоковозбуждённые состояния атомов, имеющие на поверхности Земли очень короткое время жизни, в глубинах космоса практически стабильны.

У электрона самая минимально возможная масса[191 - Или, что, то же самое, собственный векторный гравитационный монополь – результат квантового перехода магнитного монополя в точке его исчезновения.] инертного покоя (511 Кэв), однако эффективный размер фазового объёма волноводов составляет величину 1,2 х 10

см и существенно превосходит размеры атомного ядра. Его стабильное по возрасту жизни микропространство имеет полуцелый спин и отрицательный (позитрон – положительный) заряд 1,6 х 10

Кл, а также собственный магнитный момент, равный магнетону Бора.

Электроны рождаются в природе, с одной стороны, при образовании заряженных ядер химических элементов, путём распада нейтральных ядер, в процессах бета-распада ядер атомов химических элементов, при распаде нейтрона и других нестабильных элементарных частиц. А с другой стороны при взаимодействии фотонов с атомно-молекулярным веществом в различных агрегатных состояниях – фотоэффект[192 - Явление противоположное эффекту излучения фотона, воэбуждённым атомным электроном.] и пар – образование. Свойства структуры электрона, кроме названных явлений, могут также дополнить распады короткоживущих элементарных частиц, таких как мюон, а также весьма загадочные явления бета-распада кобальта-60, нейтрона и некоторых других частиц. В этих превращениях ориентированные по спину внешним магнитным полем распадающиеся ядра излучают в одну сторону больше электронов, чем в другую. Это же явление наблюдается и у античастиц. Эксперименты, выполненные в этом направлении с 1956 по 1964 мировым научным сообществом, показали о наличии у электронов, позитронов и других микрочастиц сложной лево и право вращательной структуры.
<< 1 ... 6 7 8 9 10 11 >>
На страницу:
10 из 11

Другие электронные книги автора Александр Александрович Шадрин