Оценить:
 Рейтинг: 4.67

Кибержизнь. Контуры медицины будущего

Год написания книги
2017
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

В 1856-м Мечников поступил сразу во 2-й класс харьковской гимназии, которую окончил с золотой медалью в 1862 году. Еще гимназистом Мечников посещал лекции по сравнительной анатомии и физиологии в Харьковском университете, занимался микроскопированием и читал естественнонаучную литературу. По окончании гимназии Мечников отправился учиться в Германию, но обескураженный холодным приемом русских студентов, сразу же вернулся в Россию и поступил на естественное отделение физико-математического факультета Харьковского университета, где за два года вместо четырех (1862–1864) он расправился с программой естественного отделения. Сдав экзамены экстерном, Мечников, как подающий большие надежды молодой ученый, был командирован за границу для пополнения знаний.

Несчастье постигло ученого 20 апреля 1873 года, когда от туберкулеза умерла его первая жена – Людмила Федорович. После ее смерти Мечников был сильно подавлен и предпринял попытку самоубийства. Он употребил морфий и только по счастливой случайности выжил – порция морфия была слишком велика – возникшая рвота удалила из желудка не успевший всосаться в него яд.

В 1875 году он женился на Ольге Николаевне Белокопытовой, ставшей его помощницей в научном поиске. В конце концов Мечников сделал свое наиболее важное открытие – Илья Ильич стал основоположником фагоцитарной теории иммунитета. За исследования невосприимчивости в инфекционных болезнях в 1908 году Мечникова удостоили Нобелевской премии. Он доказал существование в организме особых амебоидных клеток, способных поглощать патогенные микроорганизмы. Наблюдая за подвижными клетками морской звезды под микроскопом, Илья Ильич обнаружил, что они не только участвуют в процессе пищеварения, но выполняют защитные функции в организме, обволакивая и поглощая инородные частицы. Мечников дал им название «фагоцитов», а сам процесс получил название «фагоцитоз».

В своей теории ученый описал три основных свойства, которые присущи клеткам – фагоцитам: способность защищать организм от инфекций, а также защищать его от токсинов (включая продукты распада тканей), способность фагоцитов к вырабатыванию ферментов и биологически активных веществ, присутствие антигенов на мембране клеток фагоцитов.

Несмотря на значительный прорыв в исследованиях строения и взаимодействия клеток организма, предложенная Мечниковым фагоцитарная теория остается главной основой современной иммунологии. В 1937 году начались работы по электрофорезу белков крови, положившие начало изучению иммуноглобулинов, а вскоре были открыты основные классы антител (иммуноглобулинов), способных идентифицировать и нейтрализовать чужеродные элементы. Все эти исследования лишь развивают теорию, предложенную Мечниковым, исследуя ее механизмы на более детальном уровне. Основными вызовами, на которые фагоцитарная теория должна найти ответ, являются вопросы иммунодефицита, лечение онкологических заболеваний, разработка новых вакцин и антиаллергенов.

Перспективным направлением является изучение механизмов ответной реакции инфекционных микроорганизмов на средства борьбы с ними. Что запускает их модификации, как происходит этот процесс на биохимическом уровне, каким образом на механизмы иммунитета влияет психическое и эмоциональное состояние и другие дополнительные факторы – эти и другие вопросы остаются пока малоизученными и ждут своих открывателей. В данной книге, прежде всего нас будут интересовать работы Мечникова, связанные с функцией фагоцитов с точки зрения их роли в процессе старения. В трудах Мечникова вопросы старения занимали значительное место. Он считал, что старость и смерть у человека наступают преждевременно в результате самоотравления организма микробными и иными ядами. Наибольшее значение Мечников придавал в этом отношении кишечной флоре. На основе этих представлений Мечников предложил ряд профилактических и гигиенических средств борьбы с самоотравлением организма (стерилизация пищи, ограничение потребления мяса, и др.). Основным средством в борьбе против старения и самоотравления организма человека Мечников считал болгарскую молочнокислую палочку – Lactobacillus delbrueckii subsp. bulgaricus. Он первый в мире оценил значение открытия болгарского студента Стамена Григорова. Ещё в 1905 году Мечников, будучи директором Института Пастера в Париже, пригласил этого молодого болгарского ученого, чтобы он прочёл лекцию о своём открытии перед светилами микробиологии того времени.

Конечной целью борьбы с преждевременной старостью Мечников считал ортобиоз – достижение «полного и счастливого цикла жизни, заканчивающегося спокойной естественной смертью». На основании учения Мечникова об ортобиозе в современной науке сложилось междисциплинарное направление «ортобиотика».

В ряде работ Мечниковым затронуты многие общетеоретические и философские проблемы. В ранних трудах, посвящённых вопросам дарвинизма («Очерк о происхождении видов», 1876 и др.), Мечников высказал ряд идей, предвосхитивших современное понимание некоторых вопросов эволюции. Причисляя себя к сторонникам рационализма («Сорок лет искания рационального мировоззрения», 1913), Мечников критиковал религиозные, идеалистические и мистические воззрения. Главную роль в человеческом прогрессе Мечников приписывал науке.

Илья Ильич Мечников обладал необычайно живым умом и остротой мышления. Его научные труды значительно опережали свою эпоху – он понимал и мог объяснить многие процессы, происходящие в живом организме. Мечников – это человек, который благодаря своему широкому кругозору умел ставить правильные вопросы и пытался находить на них правильные ответы. Свои «Этюды оптимизма» он написал еще в 1907 году, когда еще практически не было значимых фундаментальных открытий, позволяющих приоткрыть занавес на природу процессов старения. Мышление большого ученого (биолога, медика, физиолога) отличается от мышления обычного человека глобальностью задач, которые он перед собой ставит. И.И. Мечников поставил перед собой величайшую задачу – найти причину старения организма и понять, как происходят эти процессы. Он был одним из тех светил, которые не побоялись во время общей религиозности общества того времени замахнуться на святая святых – на продолжительность жизни человека и возможность ее продления. Именно труды гениального Мечникова легли в основу создания принципа самообновления, который будет рассмотрен в этой книге.

Отдельно стоит отметить особое понятие, введенное И.И. Мечниковым, которое и по сей день как нельзя лучше подходит для указания причин, приводящих к постепенному разрушению и со временем к смерти организма.

Имеется в виду такое понятие, как «дисгармония человеческой природы», которая, по убеждению Мечникова, заключалась в том, что в течение жизни усиливаются процессы уничтожения фагоцитами «благородных элементов организма». Из этой дисгармонии, которую он увидел на клеточном уровне, он развил философскую концепцию, которая гласит, что чем взрослее человек, тем больше он психологически подготовлен к умиранию. Дожив до 73-х лет, Илья Ильич начал замечать, что тяга к жизни у него становится меньше, и в конце своего философского трактата он пришел к мысли о гармонии с самим собой, признав умирание живого организма естественным процессом.

В главе этой книги, посвященной «теории старения», мы с вами сделаем следующий шаг в этом направлении и войдем в ранее неизведанные земли науки, где найдем знание о том, каким образом можно победить старость.

В своей книге «Этюды о природе человека» великий Мечников произносит поистине пророческую фразу: «Для изменения человеческой природы тоже, прежде всего, надо отдать себе отчёт в идеале, к которому следует стремиться, и затем употребить все средства, представляемые наукой для его существования. Если мыслим идеал, способный соединить людей в некоторого рода религию будущего, то он не может быть обоснован иначе, как на научных данных. И если справедливо, как это часто утверждают, что нельзя жить без веры, то последняя не может быть иной, как верой во всемогущество знания».

Пригожин Илья Романович

25.01.1917 – 28.05.2003

«Да, мир нестабилен. Но это не означает, что он не поддается научному изучению. Признание нестабильности – не капитуляция, напротив – приглашение к новым экспериментальным и теоретическим исследованиям, принимающим в расчет специфический характер этого мира».

На работы Ильи Романовича Пригожина меня так же вывел «научный вебсерфинг». И начал я знакомство с ним, как ни банально, со статьи в Википедии. Далее, в процессе изучения его работ, меня поразил удивительный мир диссипативных структур, первопроходцем в котором был Пригожин. Поразила его «мощь в охвате познаваемого», ее буквально на физическом уровне ощущали люди, которым выпало счастье работать и дружить с этим научным великаном.

Бельгийский химик Илья Пригожин родился в Москве, в канун русской революции, в семье инженера-химика Романа Пригожина и музыканта Юлии Вишман. Благодаря стараниям матери, Илья с детства играл на пианино. Ноты, как она позднее вспоминала, Илья научился читать раньше, чем слова.

В 1921 г. семья Пригожиных эмигрировала из России сначала в Литву, потом в Германию, а с 1929 г. они поселились в Бельгии. Илья Романович всегда живо интересовался историей и философией. Будущее же свое он связывал с профессией концертирующего пианиста. В Свободном университете в Брюсселе его особенно привлекала термодинамика – наука, связанная с тепловой и другими формами энергии. Став здесь в 1943 г. бакалавром естественных наук, Илья Пригожин написал диссертацию о значении времени и превращения в термодинамических системах, за которую два года спустя был удостоен докторской степени. В 1947 г. он был назначен профессором физической химии в Свободном университете, а в 1962-м стал директором Солвеевского международного института физики и химии в Брюсселе.

Пригожина больше всего интересовали в термодинамике неравновесные специфически открытые системы, в которых либо материя, либо энергия, либо то и другое обмениваются с внешней средой в реакциях. При этом количество материи и энергии либо количество материи или количество энергии со временем увеличивается или уменьшается. Чтобы объяснить поведение систем, далеких от равновесия, Илья Пригожин сформулировал теорию диссипативных структур. Им было доказано существование неравновесных термодинамических систем, которые, при определённых условиях, поглощая вещество и энергию из окружающего пространства, могут совершать качественный скачок к усложнению, причём такой скачок не может быть предсказан, исходя из классических законов статистики. Считая, что неравновесность может служить источником организации и порядка, он представил диссипативные структуры в терминах математической модели с зависимыми от времени нелинейными функциями, которые описывают способность систем обмениваться материей и энергией с внешней средой и спонтанно себя рестабилизировать.

Ставший теперь классическим пример диссипативной структуры в физической химии известен как нестабильность Бенарда. Такая структура возникает, когда слои легкоподвижной жидкой среды подогреваются снизу. При достаточно высоких температурных градиентах тепло передается через эту среду как обычно, и большое число молекул в жидкости образуют специфические геометрические формы, напоминающие живые клетки.

В 1947 году Пригожин сформулировал и доказал теорему термодинамики неравновесных процессов, которая гласит: «В стационарном состоянии производство энтропии внутри термодинамической системы при неизменных внешних параметрах является минимальным и постоянным. Если система не находится в стационарном состоянии, то оно будет изменяться до тех пор, пока скорость производства энтропии, или, иначе, диссипативная функция системы не примет наименьшего значения». Когда я говорю о Пригожине, то для меня это, прежде всего, человек, который вскрыл физику рождения сложности в поэтапной эволюции живой материи.

В 1977 г. Илье Романовичу была присуждена Нобелевская премия по химии «за работы по термодинамике необратимых процессов, особенно за теорию диссипативных структур». «Исследования Пригожина в области термодинамики необратимых процессов коренным образом преобразовали и оживили эту науку», – сказал Стиг Классон в своей вступительной речи от имени Шведской королевской академии наук. Эта работа открыла для термодинамики «новые связи и создала теории, устраняющие разрывы между химическим, биологическим и социальным полями научных исследований». Исследования Ильи Романовича Пригожина отличают также элегантность и прозрачность, поэтому ученого заслуженно называют «поэтом термодинамики». Илья Романович был одним из тех редких людей, которые могли увидеть непростые вещи в простых вещах.

Хочу отметить, что это отличительная особенность всех великих ученых – видеть необычное в обычном! Так вот, Илья Романович был наделен такой способностью поистине до невероятной степени. В 1982 году Пригожин становится иностранным членом Академии наук СССР. Его работы многократно переводились на русский язык. К его работам обращаются многие ученые, не только физики и химики, но и биологи, палеонтологи и математики, историки, филологи. В 1989 году король Бельгии пожаловал Пригожину титул виконта.

В данной книге влияние этого гиганта будет прослеживаться красной нитью во многих главах, а принцип самообновления вообще может быть полностью описан инструментами нелинейной термодинамики от бифуркации до теоремы о минимуме производства энтропии, которые сформировал, ввёл в практику и математически доказал И.Р. Пригожин.

Доброборский Борис Самуилович

27.08.1945

«Устойчивость неравновесного термодинамического состояния биологических систем обеспечивается непрерывным чередованием фаз потребления и выделения энергии посредством управляемых реакций синтеза и расщепления АТФ».

Борис Самуилович Доброборский – учёный с очень разносторонней практикой, о которой ещё будет сказано ниже. Когда я впервые прочитал его «Теоретическую биологию», основанную на одноименном труде Бауэра, мир теоретической физики и мир биологии через его «теорию биоритмов» для меня слились воедино. И это был, конечно, ментальный прорыв, позволивший впоследствии найти новые, более всеобъемлющие (конвергентные) подходы к описанию биологических процессов, используя математические инструменты физиков-теоретиков. Он чётко указал на агента, который соединяет неразрывно мир физических теорий с миром биологических процессов. Этот могучий агент всего лишь всем известная молекула АТФ, но гениальное описание Доброборским процесса осуществления биоритмов, полностью завязанном на синтезе и распаде АТФ, позволило мне осознать, что на самом деле не существует в науке никакого барьера между физикой, математикой и биологией! В мире все едино и целостно, а разделение существует лишь в наших умах!

Борис Самуилович Доброборский родился в Санкт-Петербурге. В 1967 году окончил Ленинградский Горный институт по специальности радиоэлектроника, получив квалификацию радиоинженера. Доцент кафедры наземных транспортно-технологических машин автомобильно-дорожного факультета Санкт-Петербургского Государственного архитектурно-строительного университета. Академик Международной академии наук экологии и безопасности человека и природы. Автор нескольких изобретений и полезных моделей (виброгасящее устройство и др).

Борис Самуилович наш современник. Уникум этого ученого состоит в том, что, будучи инженером с техническим образованием, он является большим полиглотом, и проявляет живой интерес к изучению неравновесной термодинамики или термодинамике необратимых процессов. Его книга «Введение в теоретическую биологию», является современным развитием теорий Э.Бауэра и И.Пригожина.

Доброборский описал существование живой материи как периоды синтеза и распада АТФ. Логическим продолжением главного закона биологии, сформулированного Эрвином Бауэром, является закон Доброборского, который гласит: «устойчивость неравновесного термодинамического состояния биологических систем обеспечивается непрерывным чередованием фаз потребления и выделения энергии посредством управляемых реакций синтеза и расщепления АТФ». Из этого закона Борис Самуилович выделил два основных следствия:

– В живых организмах ни один процесс не может происходить непрерывно, а должен чередоваться с противоположно направленным: вдох с выдохом, работа с отдыхом, бодрствование со сном, синтез с расщеплением.

– Состояние живого организма никогда не бывает статическим, а все его физиологические и энергетические параметры всегда находятся в состоянии непрерывных колебаний относительно средних значений, как по частоте, так и по амплитуде.

Этими колебаниями ученый объяснил природу биоритмов, с помощью которых живые организмы обеспечивают устойчивость своего неравновесного термодинамического состояния, то есть биоритмы являются способом существования всех живых организмов.

Одной из важнейших вех научной деятельности Доброборского явилась его работа над теорией фенотипической адаптации, согласно которой все процессы адаптации условно могут быть разделены на два вида:

1. Оперативную фенотипическую адаптацию, в результате которой организм путем соответствующих оперативных физиологических реакций непрерывно реагирует на все кратковременные факторы, влияющие на его жизнедеятельность, не меняя при этом значения показателей его функциональных систем.

2. Устойчивую фенотипическую адаптацию, в результате которой при длительных воздействиях на организм факторов окружающей среды произошли такие изменения значений его функциональных систем, что организм стал более приспособлен к этим факторам.

Моя теория централизованной аэробно-анаэробной компенсации энергетического баланса (ЦААКЭБ), которая является фундаментом учения о термодинамических сферах и теориях регенерации, старения и критической адаптации изложенных в этой книге, фактически является усовершенствованной теорией фенотипической адаптации.

Подход Доброборского к решению ряда проблем теоретической биологии с позиций неравновесной термодинамики позволил в определенной степени объяснить сущность целого ряда закономерностей и явлений, ранее не имевших удовлетворительных объяснений.

А именно – установить механизм и закономерность обеспечения устойчивости неравновесного термодинамического состояния биологических систем; установить закон периодичности функционирования биологических систем; установить природу биоритмов и их роль в жизнедеятельности биологических систем; определить природу и основные законы фенотипической адаптации.

Бауэр, Пригожин, Доброборский называют жизнь термодинамически-неравновесным состоянием. Предлагаемая в этой книге концепция подразумевает, что жизнь – это не термодинамически-неравновесное состояние, а это именно равновесное состояние, но энергетически превышающее равновесное состояние окружающей среды. То есть это равновесие более высокого порядка. Для характеристики данного состояния более всего подходит даосский термин «деятельное недеяние», то есть непосредственного действия нет, но энергия в процесс заложена. Пригожин же, например, для наглядного объяснения этого состояния применял аналогию с маятником. Представьте: есть часы и есть маятник. Если маятник не раскачивать, он в итоге остановится и повиснет под действием силы тяжести. Представим теперь, что маятник повернут вертикально вверх и путем каких-то незначительных усилий, например, небольшого магнитного поля, удерживается в этом равновесии, то есть там тоже существует равновесие, но в нем заложена большая энергия. Если один из магнитов отключить, маятник упадет и создаст очень большой энергетический всплеск. По факту это и есть «неравновесное равновесие».

Далее вы проследите логический синергизм научного подхода Доброборского с представленным в этой книге термодинамическим взглядом на природу всего живого.

Павлов Иван Петрович

14.09.1849 – 27.02.1936

«Рефлекс целей есть основная форма жизненной энергии каждого из нас. Жизнь только того прекрасна и сильна, кто всю жизнь стремится к постоянно достигаемой и никогда не достижимой цели. Вся жизнь, все ее улучшения, вся ее культура делается людьми, стремящимися к поставленной ими в жизни цели».

К трудам Ивана Петровича Павлова я обратился в надежде найти практическое подтверждение моих мысленных экспериментов непосредственно в природе живого. И я нашел это подтверждение в описании условных и безусловных рефлексов. Я открыл для себя Павлова совершенно с другой стороны, нежели как его достижения преподносят студентам в медицинском ВУЗе. Павлов за много лет до открытия кибернетики на практике подтвердил математические эксперименты Зубова и Ляпунова относительно законов и формул, по которым функционирует живая материя. Таким образом, И.П. Павлов провел «эксперимент наоборот», его научные подходы во многом перекликаются с методами научного поиска, применяемыми в данной книге.

Иван Петрович Павлов – самый известный российский физиолог, основоположник учения о высшей нервной деятельности, академик Академии Наук СССР, лауреат Нобелевской премии по медицине и физиологии.

Ни один из русских ученых того времени, даже Менделеев, не получил такой известности за рубежом.

«Это звезда, которая освещает мир, проливая свет на еще не изведанные пути» – говорил о нем Герберт Уэллс. Его называли «романтической, почти легендарной личностью», «гражданином мира».
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6