Рис. 2.1. Режим независимой конфигурации.
Чтобы объединить компьютеры в беспроводную сеть, достаточно оборудовать каждый компьютер адаптером беспроводной связи. Как правило, такими адаптеры изначально комплектуются переносные компьютеры, что сводит построение сети к настройке соответствующих ресурсов и ограничений.
Обычно такой способ используется для организации хаотичной или временной сети, а также в том случае, если другой способ построения сети по каким-либо причинам не подходит.
Хотя режим независимой конфигурации прост в построении, он обладает некоторыми недостатками, главными из которых являются малый радиус действия сети и низкая устойчивость к помехам, что накладывает определенные ограничения на месторасположение компьютеров сети. Кроме того, подключиться к внешней сети или к Интернету в таком случае очень непросто.
Примечание.
При соединении двух компьютеров с использованием узконаправленных антенн радиус действия сети увеличивается и может достигать 30 км и более.
Инфраструктурная конфигурация
Инфраструктурная конфигурация, или, как ее еще часто называют, «режим клиент/сервер», – более перспективный и быстроразвивающийся вариант беспроводной сети.
Инфраструктурная конфигурация имеет много преимуществ, среди которых возможность подключения достаточно большого количества пользователей, хорошая помехоустойчивость, высокий уровень контроля подключений и многое другое. Кроме того, имеется возможность использования комбинированной топологии и проводных сегментов сети.
Помимо того, что на компьютерах должны быть установлены адаптеры беспроводной связи, для организации беспроводной сети с использованием инфраструктурной конфигурации необходимо иметь как минимум одну точку доступа (Access Point) (рис. 2.2).
Рис. 2.2. Точка доступа.
В этом случае конфигурация называется базовым набором служб (BSS – Basic Service Set). Точка доступа может работать автономно или в составе проводной сети и может выполнять функцию моста между проводным и беспроводным сегментами сети. При такой конфигурации сети компьютеры «общаются» только с точкой доступа, которая управляет передачей данных между компьютерами (рис. 2.3).
Конечно, одной точкой доступа сеть может не ограничиваться, что и случается по мере роста сети. В этом случае базовые наборы служб образуют единую сеть, конфигурация которой носит название расширенного набора служб (ESS – Extended Service Set). При такой конфигурации сети точки доступа обмениваются между собой информацией, передаваемой с помощью проводного соединения (рис. 2.4) или с помощью радиомостов. Это позволяет эффективно организовывать трафик между сегментами сети (фактически – точками доступа).
Рис. 2.3. Базовый набор служб инфраструктурной конфигурации.
Рис. 2.4. Расширенный набор служб инфраструктурной конфигурации.
2.2. Методы и технологии модуляции сигнала
Каждый новый стандарт использует новые, более быстрые и надежные спецификации для физического уровня:
• спецификация для работы в инфракрасном диапазоне;
• DSSS (Direct Sequence Spread Spectrum, расширение спектра прямой последовательностью) – определяет работу устройств в диапазоне радиочастот по радиоканалам с широкополосной модуляцией с прямым расширением спектра методами прямой псевдослучайной последовательности;
• FHSS (Frequency Hopping Spread Spectrum, расширение спектра за счет скачкообразного изменения частоты) – определяет работу устройств в диапазоне радиочастот по радиоканалам с широкополосной модуляцией со скачкообразной перестройкой частоты псевдослучайными методами;
• OFDM (Orthogonal Frequency Division Multiplexing, ортогональное мультиплексирование с разделением частот) – определяет работу устройств в диапазоне радиочастот по радиоканалам с использованием подканалов с разными несущими частотами;
• PBCC (Packet Binary Convolutional Coding, двоичное пакетное свёрточное кодирование) – метод двоичного пакетного свёрточного кодирования;
• технология кодирования Баркера – описывает способ кодирования данных с помощью последовательностей Баркера;
• CCK (Complementary Code Keying, кодирование с помощью комплементарных кодов) – описывает способ дополнительного кодирования битов передаваемой информации;
• CCK-OFDM – описывает способ кодирования данных с помощью гибридного метода, что позволяет увеличить скорость передачи сигнала при невысокой избыточности данных;
• QAM (Quadrature Amplitude Modulation, квадратурная амплитудная модуляция) – описывает способ квадратурной амплитудной модуляции сигнала, который работает на скорости выше 48 Мбит/с.
Первые образцы оборудования работали в диапазоне частот 902–928 МГц. Данные передавались со скоростью 215–860 Кбит/с при использовании метода расширения спектра прямой последовательностью (DSSS). Указанный диапазон частот разбивался на каналы шириной около 5 МГц (при скорости передачи данных 215 Кбит/с таких каналов получалось пять). При максимальной скорости передачи информации спектр сигнала достигал 19 МГц, в результате чего получался только один частотный канал шириной 26 МГц.
Когда появилось подобное оборудование, то используемой скорости передачи данных было достаточно для выполнения многих задач, если сеть состояла из нескольких компьютеров. Однако чем больше компьютеров подключалось к сети, тем ниже становилась скорость передачи данных. Например, при подключении к сети пяти компьютеров реальная скорость передачи данных в пять раз меньше теоретической. Таким образом, чем больше компьютеров в сети, тем с меньшей скоростью передавались данные, а при теоретической скорости передачи данных 860 Кбит/с возможная скорость передачи вообще составляет «крохи».
Конечно, скорость можно было бы со временем увеличить. Однако начали проявляться последствия других негативных факторов, самым главным из которых стало использование диапазона 900 МГц операторами мобильной связи. Именно этот факт привел к тому, что подобное оборудование для беспроводных сетей не прижилось среди пользователей. В результате анализа сложившейся ситуации было принято решение использовать диапазон частот 2400–2483,5 МГц, а позже – 5,150-5,350 ГГц, 5150–5350 МГц и, наконец, 5725–5875 МГц. Это позволило добиться не только большей пропускной способности таких сетей, но и достаточной защищенности от помех.
Метод DSSS
Смысл метода расширения спектра прямой псевдослучайной последовательностью (DSSS) заключается в приведении узкополосного спектра сигнала к его широкополосному представлению, что позволяет увеличить устойчивость передаваемых данных к помехам.
При использовании метода широкополосной модуляции с прямым расширением спектра диапазон 2400–2483,5 МГц делится на 14 перекрывающихся или три неперекрывающихся канала с промежутком в 25 МГц. Фактически это означает, что разное оборудование может параллельно использовать три канала, при этом не мешая друг другу работать.
Для пересылки данных используется всего один канал. Чтобы повысить качество передачи и снизить потребляемую при этом энергию[3 - Большое потребление энергии является критичным для переносных компьютеров.] (за счет снижения мощности передаваемого сигнала), используется последовательность Баркера, которая характеризуется достаточно большой избыточностью. Избыточность кода позволяет избежать повторной передачи данных, даже если пакет частично поврежден.
Метод FHSS
При использовании метода широкополосной модуляции со скачкообразной перестройкой (FHSS) частотный диапазон 2400–2483,5 МГц делится на 79 каналов шириной по 1 МГц. Данные передаются последовательно по разным каналам, создавая некоторую схему переключения между каналами. Всего существует 22 такие схемы, причем схему переключения согласовывают отправитель и получатель данных. Схемы переключения разработаны таким образом, что шанс использования одного канала разными отправителями минимален.
Переключение между каналами происходит очень часто, что обусловлено малой шириной канала (1 МГц). Поэтому метод FHSS в своей работе использует весь доступный диапазон частот, а значит, и все каналы.
Метод OFDM
Метод ортогонального частотного мультиплексирования (OFDM) является одним из «продвинутых» и скоростных методов передачи данных. В отличие от методов DSSS и FHSS, с его помощью можно параллельно передавать данные по нескольким частотам радиодиапазона. При этом информация разбиваются на части, что позволяет не только увеличить скорость, но и улучшить качество передачи.
Данный метод модуляции сигнала может работать в двух диапазонах – 2,4 и 5 ГГц.
Метод PBCC
Метод двоичного пакетного свёрточного кодирования (BCC) используется при скорости передачи данных 5,5 и 11 Мбит/с. Этот же метод, только слегка модифицированный, используется и при скорости передачи данных 22 Мбит/с.
Принцип PBCC основан на том, что каждому биту информации, который нужно передать, назначаются соответствующие два выходных бита (так называемый дибит), созданные в результате преобразований с помощью логической функции XOR и нескольких запоминающих ячеек.[4 - В протоколе 802.11b и 802.11g используются свёрточные кодеры, состоящие из шести запоминающих ячеек.] Поэтому этот метод называется свёрточным кодированием со скоростью 1/2, а сам механизм кодирования – свёрточным кодером.
Примечание.
При скорости входных битов N бит/с скорость выходной последовательности (после свёрточного кодера) составляет 2N бит/с. Отсюда и понятие скорости – один к двум (1/2).
Использование свёрточного кодера позволяет добиться избыточности кода, что, в свою очередь, повышает надежность приема данных.
Чтобы отправить готовый дибит, используется фазовая модуляция сигнала. При этом в зависимости от скорости передачи применяется определенный метод модуляции – двоичная фазовая модуляция (BPSK, скорость передачи – 5,5 Мбит/с) или квадратичная фазовая модуляция (QPSK, скорость передачи – 11 Мбит/с).
Смысл модуляции заключается в том, чтобы ужать выходной дибит до одного символа, не теряя при этом избыточность кода. В результате скорость поступления данных будет соответствовать скорости их передачи, но при этом они будут обладать сформированной избыточностью кода и более высокой помехозащищенностью.
Метод PВCC также предусматривает работу со скоростью передачи данных 22 и 33 Мбит/с. При этом используется пунктурный кодер и другая фазовая модуляция.
Для примера рассмотрим скорость передачи данных 22 Мбит/с (вдвое выше скорости 11 Мбит/с). В этом случае согласно алгоритму своей работы свёрточный кодер переводит каждые два входящих бита в четыре исходящих. Это приводит к слишком большой избыточности кода, что не всегда приемлемо при определенном уровне помех. Поэтому, чтобы уменьшить лишнюю избыточность, используется пунктурный кодер, задача которого – удаление лишнего бита в группе из четырех битов, выходящих из свёрточного кодера.
Таким образом, каждым двум входящим битам соответствуют три бита, обладающие достаточной избыточностью. Эти три бита проходят через модернизированную фазовую модуляцию (восьмипозиционная фазовая модуляция 8-PSK), которая упаковывает их в один символ, готовый к передаче.