Оценить:
 Рейтинг: 0

Перспектива. Чтоб хоть у кого-то она была

Год написания книги
2023
<< 1 2 3 4 5 >>
На страницу:
4 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

Воздушная перспектива также иногда называется тональной или цветовой. Их определения имеют нюансы и недостаточно четко очерчены, поэтому и возникают различия в источниках литературы. Фактически, тональная перспектива передает изменение насыщенности тона, цветовая – изменение цвета, а воздушная объединяет все изменения (илл.35).

Илл.35. Тональная, цветовая и воздушная виды перспективы

Эффект воздушной перспективы обусловлен плотностью воздуха. Атмосфера Земли состоит из множества молекул и более крупных частиц, таких как пыль, капли жидкости, пыльца и т. д. Чем их больше на своем пути встречает луч света, тем сильнее он отклоняется от первоначальной траектории, поглощается и рассеивается. Поэтому от объектов вдалеке на сетчатку глаза поступает гораздо меньше информации, чем от тех, которые расположены ближе. Дополнительно влияет острота зрения, заключающаяся в способности различать объекты отдельно друг от друга.

Формирование воздушной перспективы невозможно (или крайне затруднительно) подтвердить точными измерениями. Они зависят от многих факторов и в достаточно большой мере соответствуют наблюдательной перспективе.

Основные законы

– По мере удаления от зрителя объекты воспринимаются с менее четкими контурами и меньшей детализацией,

– контраст вблизи максимальный,

– объекты, расположенные ближе, воспринимаются как более объемные, а отдаленные как более плоские,

– ближние объекты имеют большую насыщенность цветов, а отдаленные кажутся бледными,

– по мере удаления светлые объекты кажутся несколько темнее, а темные – светлее,

– по мере удаления оттенки становятся более холодными, начинают преобладать голубой, синий, фиолетовый.

ИЗОМЕТРИЯ

Изометрия – это часть аксонометрии. Часто изометрические изображения используют в академическом рисунке, архитектурных построениях, черчении. Ее особенностью является то, что сохраняется масштаб размеров объекта, их перспективное сокращение отсутствует. Объекты в изометрии удобно строить по сетке, чтобы не прикладывать транспортир к каждому углу.

Изометрия применяется при имитации эффекта 3D. Ее преимуществами являются наглядность и простота построения. К изометрическим изображениям прибегают при дизайне сайтов, приложений, компьютерных игр, интерьера и экстерьера, общего плана.

Основные законы

– Отсутствует перспективное сокращение,

– видны три стороны объекта,

– нет ТС,

– все параллельные линии остаются параллельными,

– угол между осями равен 120

.

Строим параллелепипед:

1. Размечаем оси X, Y и Z. Они расположены под углом 120

по отношению друг к другу (илл.36).

Илл.36

2. По оси Y откладываем отрезок А произвольной длины. Чтобы получился куб, все отрезки должны быть равны друг другу.

3. По осям X и Z также чертим произвольные по длине отрезки Б и В (илл.37).

Илл.37

4. От конечных точек отрезков Б и В поднимаем вертикальные линии, равные по высоте отрезку А. Получаем отрезки Г и Д.

5. Соединяем отрезки Г и Д с верхней точкой отрезка А. Эти линии параллельны осям X и Z и равны отрезкам Б и В. Получившиеся плоскости соответствуют невидимым граням параллелепипеда (илл.38).

Илл.38

6. От нижней точки отрезка Г проводим линию Е, параллельную оси Z и равную по длине отрезку В.

7. От нижней точки отрезка Д проводим линию Ж, параллельную оси Х и равную по длине отрезку Б. Мы получили нижнюю грань (илл.39).

Илл.39

8. Строим ближнее к нам ребро, равное длине отрезка А.

9. Соединяем его верхнюю точку с верхними точками отрезков Г и Д. Новые линии также параллельны осям X и Z и равны отрезкам Б и В (илл.40).

Илл.40

10. Убираем линии построения. Невидимые ребра проведены более тонкой линией.

11. Накладываем тон (илл.41).

Илл.41

Может показаться, что дальняя часть параллелепипеда больше. Такой эффект получается за счет того, что мы привыкли наблюдать перспективное искажение, а в данном случае оно отсутствует и параллелепипед смотрится неестественно.

Строим пирамиду:

1. На осях X и Z откладываем одинаковые отрезки А и Б.

2. От их конечных точек проводим линии, параллельные осям X и Z. Они равны отрезкам А и Б и между собой (илл.42).

Илл.42

3. В получившемся ромбе проводим диагонали.

4. Из точки пересечения диагоналей поднимаем вертикальную линию, которая определит высоту пирамиды. В данном случае она совпадает с осью Y, т.к. стороны равны между собой (илл.43).

Илл.43

5. Соединяем каждый угол основания с верхней точкой вертикали. Дальнее и ближнее ребра совпадают с вертикалью по причине, указанной выше (илл.44).

Илл.44
<< 1 2 3 4 5 >>
На страницу:
4 из 5