Оценить:
 Рейтинг: 0

Философия науки и техники. Проблемы начала XXI века

Год написания книги
2017
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

технический прогресс ориентирован на эмпирические познания;

эволюционная модель соотношения науки и техники;

развитие науки тесно связано с разработкой технических устройств и инструментов;

техника науки опережает в своем развитии технику повседневной жизни;

до XIX столетия не существовало никакого регулярного применения научных знаний в технической практике, которое можно наблюдать сегодня в технических науках.

Теперь подробнее остановимся на каждой из них.

Долгое время (и особенно в 50—60-е гг. нашего столетия) одной из наиболее распространённых моделей отношений науки и техники была так называемая линейная модель, рассматривающая технику в качестве простого приложения науки или даже – как прикладную науку. Однако эта точка зрения в последние годы подверглась серьёзной критике как слишком упрощённая. Такая модель взаимоотношения науки и техники, когда за наукой признается функция производства знания, а за техникой – лишь его применение, вводит в заблуждение, так как утверждает, что наука и техника представляют различные функции, выполняемые одним и тем же сообществом.

Например, О. Майер считает, что невозможно четко определить границу между наукой и техникой. Так в телевизорах предыдущего поколения использовались катодными трубками – деталь чисто научной аппаратуры, изобретенной в стенах научной лаборатории для измерения массы электрона. В свою же очередь новая техника эксперимента позволила разработать полярографический метод определения состава вещества вместо применявшихся значительно более длительных методов физико-химического анализа. Техника дала астрономии новые методы фотографирования, радиолокации, изучения световых волн, а производство рентгеновских аппаратов основанных на той же технологии позволило сделать ряд важных фундаментальных открытий в физике, химии, биологии, медицине. В термодинамике, аэродинамике, физике полупроводников, медицине невозможно отделить практику от теории, они сплетены здесь в единый предмет. Многие учёные сделали вклад в технику, а многие инженеры стали признанными и знаменитыми авторитетами в науке. Например, Леонардо да Винчи положил принцип полета птицы в основу модели летательного аппарата – орнитоптера, а величайший инженер Герон Александрийский установил «золотое правило механики» и разработал справочник по прикладной математике. Научные и технические цели, по мнению Майера, часто преследуются одновременно (или в различное время) одними и теми же людьми или институтами, которые используют одни и те же методы и средства. Этот автор полагает, «что практически применимого критерия для различения науки и техники попросту не существует»[4 - Mayer, O. The Science-Technology Relationship as a Historiographic Problem // Technology and Culture. 1976. Vol. 17. №4. P. 667, 668.]. Это действительно серьёзный вопрос, ведь «Орудия – не что иное, как материализованные термины, и потому между законами мышления и техническими достижениями могут быть усматриваемы постоянные параллели»[5 - Флоренский Л. А. Homo Faber. Публикация в: Половинкин С. М. Флоренский Л. А.: логос против хаоса. М., 1989. С. 56—59]. Это аргументированное мнение требует более глубоко анализа. В чем же собственно тогда разница между понятиями науки и техники, между технической деятельностью и научной?

Существует мнение, что главное различие между наукой и техникой – лишь в широте кругозора и в степени общности проблем: технические проблемы более узки и более специфичны. Однако в действительности наука и техника составляют различные сообщества, каждое из которых различно осознает свои цели и систему ценностей.

Такая упрощённая линейная модель технологии как прикладной науки, то есть. модель, постулирующая линейную, последовательную траекторию – от научного знания к техническому открытию и инновации – большинством специалистов признана сегодня неадекватной.

Вторая принципиальная концепция заключается в том, что процессы развития науки и техники автономны, но скоординированы. Тогда вопрос их соотношения можно рассматривать с двух точек:

наука использует технику инструментально на некоторых стадиях своего развития для получения собственных результатов и наоборот

как эволюционную модель, в которой техника задает условия для выбора научных вариантов, а наука – технических.

Приверженцем первой точки зрения является американский историк техники М. Кранцберг. В своей работе «Разобщенность науки и техники»[6 - См.: Kranzberg, M. the Disunity of Science-Technology//American Scientist/ 1968.Vol.56. №1] он говорит о несостоятельности линейной модели. По его мнению, технический прогресс руководствуется, прежде всего эмпирическим знанием, полученным в процессе имманентного развития самой техники, а не теоретическим знанием, привнесенным в нее извне научным исследованием.

Беме, Ван Ден Дале и Крон приводят трехфазную модель соотношения науки и техники:

«Первая фаза – фаза научной революции когда ни наука ни техника не институализировались как отдельные социальные системы.

Вторая фаза – фаза когда наука институализировалась что привело к дифференциации науки и техники.

Третья фаза, – в которой наука достигает такого развития, что может быть ориентировала на практические цели и генерирует новые технологии»[7 - Бёме, Ван Ден Дале, Крон, Сциетификация техники/ Философия техники в ФРГ, М. 1989 С. 104—131].

Однако П. Вайнгарт критикует эту упрошенную модель за то, что она базируется на единичных примерах и имеет методологические дефекты[8 - Вайнгарт П., Отношение между наукой и техникой: социологическое объяснение. / Философия техники в ФРГ, М. 1989 С. 133—134]. К его критике можно добавить, что анализ положения фундаментальной науки показывает, что ее ориентация на «чистое» знание не претерпела изменений. «Интеллектуально за чистой, фундаментальной наукой сохраняется привилегия производства нового знания, которая основывается на допущении или, скорее, определении, что только открытие универсальных законов природы является показателем прогресса в познании»[9 - Вайнгарт П., Отношение между наукой и техникой: социологическое объяснение. / Философия техники в ФРГ, М. 1989 С. 132].

Конечно, ошибочно считать технику лишь прикладной наукой, но не менее ошибочно полагать, что наука играет незначительную роль в техническом прогрессе. Все чаще в нашей жизни именно методы научного исследования становятся технологическими приемами. Это делает науку не только родоначальником новой техники, но и новых технологий производства, а следовательно повышает ее роль в жизнедеятельности людей. Так примером того, как самые отвлеченные научные труды превращаются в основу для новых отраслей промышленности, представляют работы А. Эйнштейна. Вряд ли кто-нибудь из его современников мог даже предположить, что открытое им соотношение между массой и энергией станет началом огромной отрасли промышленности, производящей атомную энергию в мирных и военных целях.

Этой же позиции придерживается американский философ техники

Г. Сколимовски[10 - Skolimovski, H. The Structure in Technology. Technology and Culture. 1966. Vol.7. №3 P.374, 376.]. Он считает, что целью науки является преумножение человеческих знаний с помощью новых теорий, в то время как целью техники является создание новых артефактов при помощи изобретения средств повышения эффективности. Таким образом, он указывает на то, что цели и средства их достижения в науке и технике различны. Но такое разграничение лишает технический прогресс функции получения знаний, что не соответствует его предназначению. Мы видим пример того, что в настоящее время практически невозможно определить грань между научным и техническим процессом, поэтому стоит говорить о едином научно-техническом прогрессе.

В эволюционной модели соотношения науки и техники выделяются три взаимосвязанные, но самостоятельные сферы: наука, техника и производство (или – более широко – практическое использование). Внутренний инновационный процесс происходит в каждой из этих сфер по эволюционной схеме. Для С. Тулмина, например, очевидно, что выработанная им дисциплинарная модель эволюции науки применима также и для описания исторического развития техники. Только в данном случае речь идёт уже не о факторах изменения популяции теорий или понятий, а об эволюции инструкций, проектов, практических методов, приёмов изготовления и т. д. Новая идея в технике часто ведёт, как и в науке, к появлению совершенно новой технической дисциплины. Техника развивается за счёт отбора нововведений из запаса возможных технических вариантов. Однако, если критерии отбора успешных вариантов в науке являются главным образом внутренними профессиональными критериями, в технике они зачастую будут внешними, т. е. для оценки новаций в технике важны не только собственно технические критерии (например, эффективность или простота изготовления), но и – оригинальность, конструктивность и отсутствие негативных последствий. Кроме того, профессиональные ориентации инженеров и техников различны, так сказать, в географическом отношении: в одних странах инженеры более ориентированы на науку, в других – на коммерческие цели, в третьих – на экологически безопасные. Важную роль скорости нововведений в технической сфере играют социально-экономические факторы.

Исследование развития научного знания, проведенное К. Поппером, Т. Куном, П. Фейерабендом, подготовило распространение аналогии между научным и биологическим развитием. Наиболее ярко и последовательно эта аналогия проводится в эволюционной эпистемологии С. Тулмина[11 - См.: Тулмин, С. Человеческое понимание. М., 1984.]. По мнению этого автора, для описания взаимодействия трёх автономных эволюционных процессов справедлива та схема, которую он создал для описания процессов развития науки, а именно: создание новых вариантов (фаза мутаций) – создание новых вариантов для практического использования (фаза селекции) – распространение успешных вариантов внутри каждой сферы на более широкую сферу науки и техники (фаза диффузии и доминирования). Подобным же образом связаны техника и производство. Тулмин также отрицает, что технику можно рассматривать просто как прикладную науку. Во-первых, неясно само понятие «приложение». В этом плане законы Кеплера вполне могут рассматриваться как специальное «приложение» теории Ньютона. Во-вторых, между наукой и техникой существуют «перекрёстные связи» и часто бывает трудно определить, находится «источник» какой-то научной или технической идеи в области науки или в сфере техники.

Можно добавить, что основная часть приведенного в данной работе исследования посвящена новейшей истории – XV – XXI векам. Соотношение науки в других культурах и на других исторических отрезках было несколько отлично. Нужно помнить о том, что техника действительно долгие столетия развивалась исключительно как ремесло, а наука как элитарное, обособленное от практики времяпрепровождение. Многие тысячелетия, например, обработка металла и врачебное искусство развивались без какой-либо связи с наукой. Положение изменилось лишь в последнее столетие, когда техника и промышленность действительно были революционизированы наукой. Но это не означает, по мнению Тулмина, что изменилась сама сущность техники, но лишь то, что новое, более тесное партнёрство техники и науки привело к ускорению решения технических проблем, ранее считавшихся неразрешимыми. Можно добавить только, что связи между любыми отраслями знания со временем растут и развиваются. И от чистой философии, чистого умозрительного анализа человеческая мысль постоянно шагает в направлении практического применения.

Аналогичным образом объяснял взаимодействие науки и техники другой известный философ науки – Дерек де Солла Прайс[12 - Дерек Джон де Солла Прайс (1922 (19220122) -1983) – британско-американский историк науки. Среди наиболее значительных работ Прайса – книга 1963 года «Малая наука, большая наука» (Little Science, Big Science), заложившая основания современной наукометрии.], который пытался разделить развитие науки и техники на основе выделения различий в интенциях и поведении тех, кто занимается научным техническим творчеством. Учёный – это тот, кто хочет публиковать статьи, для техника же опубликованная статья не является конечным продуктом. Фред Бон подчеркивает различие между наукой и техникой заключающееся в том, что наука ограничивается лишь предсказанием явлений, тогда как она должна давать возможность их вызывать[13 - См.: Bon F. Ucber das Sollen und das Gute. 1898].

Прайс определяет технику как исследование, главным продуктом которого является не публикация (как в науке), а – машина, лекарство, продукт или процесс определённого типа и пытается применить модели роста публикаций в науке к объяснению развития техники.

В данном случае философы науки пытаются перенести модели динамики науки на объяснение развития техники. Однако этот взгляд представляется весьма узким. Конечно, это не означает, что многие результаты, полученные в современной философии науки, не могут быть использованы для объяснения и понимания механизмов развития техники, особенно вопроса о соотношении науки и техники. Однако некоторые факты приведенные ниже указывают на то, что логика развития техники несколько отлична.

Согласно такой точки зрения, наука развивалась, ориентируясь на развитие технических аппаратов и инструментов, и представляет собой ряд попыток исследовать способ функционирования этих инструментов. Германский философ Гернот Беме приводит в качестве примера теорию магнита английского учёного Вильяма Гильберта, которая базировалась на использовании компаса. Аналогичным образом можно рассмотреть и возникновение термодинамики. Термодинамика возникла в первой половине XIX века в связи с развитием теории тепловых машин (С. Карно) и установлением закона сохранения энергии (Ю. Р. Майер, Дж. Джоуль, Г. Гельмгольц).

Другими примерами являются открытия Галилея и Торричелли, к которым их привело знакомство с практической работой инженеров, строивших водяные насосы. По мнению Беме, техника ни в коем случае не является применением научных законов, скорее, в технике идёт речь о моделировании природы сообразно социальным функциям. «И если говорят, что наука является базисом технологии, то можно точно также сказать, что технология даёт основу науке… Существует исходное единство науки и технологии Нового времени, которое имеет свой источник в эпохе Ренессанса. Тогда механика впервые выступила как наука, как исследование природы в технических условиях (эксперимента) и с помощью технических моделей (например, часов и т. п.)»[14 - См.: Bohme, G. Models for the Development of Science // Science, Technology and Society. A Cross-Disciplinary Perspective. L., 1972. P. 453—454.].

Через появление лабораторий при производстве начинается процесс зарождения собственно технического знания, как связующего звена между наукой и практикой. «Прогресс в добыче металлов (железа) и открытии новых источников энергии (паровая машина) сделал затем необходимыми систематические эксперименты и точные расчеты. С учреждением соответствующих лабораторий для специфических нужд технических наук (в Германии они появились поначалу при Высшей технической школе в Мюнхене в 1871 г.) также стало очевидным, что технические дисциплины обладают своей собственной, отличной от естественных наук предметной областью»[15 - Котенко В. П. История философии техники. Возникновение -формирование-предмет: Учеб. Пособие /ГЭТУ. СПб., 1997. С 22].

В известной степени техника находится между наукой и природой, являясь каналом, по которому идеи человека транслируются в мир природы. Таким же образом идет и обратный поток – познавая природу, через технику применения её элементов, человек обогащает научные знания. Можно сказать даже, что техника ближе к природе, нежели к науке, так как технические объекты и природные осязаемы. Утверждение Бёме о точ, что техника дает основу науке, отчасти верно, поскольку прогресс науки зависел в значительной степени от изобретения соответствующих научных инструментов (технических инструментов созданных специально для научных целей). Причём многие технические изобретения были сделаны до возникновения экспериментального естествознания, например, телескоп и микроскоп.

Можно в том числе утверждать, что без всякой помощи науки были реализованы крупные архитектурные проекты. Например, одно из семи чудес – египетские пирамиды в Гизе были построены только с использованием физического труда и технических устройств, в частности с помощью подъемных машин. Без сомнения, прогресс техники сильно ускоряется наукой; верно также и то, что «чистая» наука пользуется техникой, т. е. инструментами, а наука была дальнейшим расширением техники. Но это ещё не означает, что развитие науки определяется развитием техники. А к современной науке, скорее даже, применимо противоположное утверждение.

Четвёртая точка зрения, приводимая Гороховым в работе «Основы философии техники и технических наук», оспаривает предыдущую, утверждая, что техника науки, т. е. измерение и эксперимент, во все времена обгоняет технику повседневной жизни. Это объясняется проявлением единства двух противоположных тенденций во взаимосвязи науки и техники. С одной стороны, возрастает роль техники в развитии науки, усиливается зависимость развития науки от уровня развития и запросов техники. С другой – увеличивается относительная самостоятельность развития науки от техники, что проявляется, в частности, в опережении отдельными отраслями науки непосредственных запросов техники и даже в рождении наукой отдельных отраслей.

Эти противоположные и взаимосвязанные тенденции и свидетельствуют о не одинаковых темпах развития техники на ее разных структурных уровнях. Темпы развития техники как источника развития науки являются большими, чем темпы развития самой науки. Этим обеспечивается, с одной стороны, определяющая роль техники по отношению к науке. С другой стороны, темпы развития техники как результата реализации научных знаний ниже темпов роста этих знаний. В силу этого рост научных знаний опережает непосредственные запросы техники. Таким образом, мы получаем, что развитие техники науки опережает развитие техники повседневной жизни.

Этой точки зрения придерживался, например, А. Койре, который оспаривал тезис, что наука Галилея представляет собой не что иное, как продукт деятельности ремесленника или инженера. Он подчёркивал, что Галилей и Декарт никогда не были людьми ремесленных или механических искусств и не создали ничего, кроме мыслительных конструкций. С его точки зрения не Галилей учился у ремесленников на венецианских верфях, напротив, он научил их многому. Он был первым, кто создал первые действительно точные научные инструменты – телескоп и маятник, которые были результатом физической теории. При создании своего собственного телескопа Галилей не просто усовершенствовал голландскую подзорную трубу, а исходил из оптической теории, стремясь сделать невидимое наблюдаемым, из математического расчёта, стремясь достичь точности в наблюдениях и измерениях.

Измерительные инструменты, которыми пользовались его предшественники, были по сравнению с приборами Галилея ещё ремесленными орудиями. Новая наука заменила расплывчатые и качественные понятия аристотелевской физики системой надёжных и строго количественных понятий. Заслуга великого учёного в том, что он заменил обыкновенный опыт основанным на математике и технически совершенным экспериментом. Декартовская и Галилеевская наука имела огромное значение для техников и инженеров. То, что на смену миру «приблизительности» и «почти» в создании ремесленниками различных технических сооружений и машин приходит мир новой науки – мир точности и расчёта, – заслуга не инженеров и техников, а теоретиков и философов. Примерно такую же точку зрения высказывал Луис Мэмфорд: «Сначала инициатива исходила не от инженеров-изобретателей, а от учёных… Телеграф, в сущности, открыл Генри, а не Морзе; динамо – Фарадей, а не Сименс; электромотор – Эрстед, а не Якоби; радиотелеграф – Максвелл и Герц, а не Маркони и Де Форест…» Преобразование научных знаний в практические инструменты, с точки зрения Мэмфорда, было простым эпизодом в процессе открытия. Из этого выросло новое явление: обдуманное и систематическое изобретение. Например, телефон на большие дистанции стал возможен только благодаря систематическим исследованиям в лабораториях Белла[16 - См.: Мамфорд, Л. Миф машины. Техника в развитии человечества. М., 2001.].

Горохов же оценивает и этот взгляд как весьма односторонний. Хорошо известно, что ни Максвелл, ни Герц не имели в виду технических приложений развитой ими электромагнитной теории. Герц ставил естественнонаучные эксперименты, подтвердившие теорию Максвелла, а не конструировал радиоприёмную или радиопередающую аппаратуру, изобретённую позже. Потребовались ещё значительные усилия многих учёных и инженеров, прежде чем подобная аппаратура приобрела современный вид. Верно, однако, что эта работа была связана с серьёзными систематическими научными (точнее, научно-техническими) исследованиями. Как например «в случае с радио (Маркони, 1895—1907) и с вентелем Флеминга (1904), которые были тесно связаны с работой Максвелла по электромагнетизму (1873). Другим примером является химия, где разработка периодической системы (Менделеев, 1871) и развитие основных теорий химических соединений (Кекуле, 1858—1866) подготовили фундамент для того, что должно было стать первой отраслью промышленности, „основанной на науке“»[17 - Вайнгарт П., Отношение между наукой и техникой: социологическое объяснение//Философия техники в ФРГ, С. 154].

В то же время технологические инновации вовсе не обязательно являются результатом движения, начинающегося с научного открытия. Эта теория находит свое подтверждение и в наше время. Например, результаты работы большого адро?нного коллайдера – ускорителя заряженных частиц на встречных пучках, предназначенного для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений, исключительно важны с научной точки зрения, так как дают возможность смоделировать процессы, происходящие в «чёрных дырах». Но с другой стороны эти результаты на данном этапе развития человечества не имеют практического применения в повседневной жизни.

Наиболее реалистической и исторически обоснованной точкой зрения (пятая точка зрения) является та, которая утверждает, что вплоть до конца XIX века регулярного применения научных знаний в технической практике не было, но это характерно для технических наук сегодня. «Принцип XVIII века, что наука больше обязана технике, чем наоборот, – пишет П. Вайнгарт, – был неприменим в XIX веке. Отношения между наукой и техникой, если они вообще существовали, были несистематическими…»[18 - Вайнгарт П., Отношение между наукой и техникой: социологическое объяснение//Философия техники в ФРГ, С. 154] В течение XIX века отношения науки и техники частично переворачиваются в связи со «сциентификацией» техники. Этот переход к научной технике не был, однако, однонаправленной трансформацией техники наукой, – он был их взаимосвязанной модификацией. Другими словами, «сциентизация техники» сопровождалась «технизацией науки».

Техника и наука большую часть своей истории были мало связаны друг с другом. В античной культуре наука и техника рассматривались как принципиально различные виды деятельности. В античном мышлении существовало четкое различение эпистеме, на постижении которого основывается наука, и тэхнэ, практического знания, которое необходимо для дела и связано с ним. Тэхнэ не имело никакого теоретического фундамента, античная техника всегда была склонна к рутине, сноровке, навыку; технический опыт передавался от отца к сыну, от матери к дочери, от мастера к ученику. Древние греки проводили четкое различение теоретического знания и практического ремесла. И такое разделение продолжалось вплоть до XIX века. Люди могли делать и делали устройства, не понимая, почему они так работают. В то же время естествознание решало в основном свои собственные задачи, хотя часто отталкивалось от техники. Инженеры, провозглашая ориентацию на науку, в своей непосредственной практической деятельности руководствовались ею незначительно. После многих веков такой «автономии» наука и техника соединились в XVII веке, в начале научной революции. Однако лишь к XIX веку это единство приносит свои первые плоды, и только в XX веке наука становится главным источником новых видов техники и технологии.

Техника в свою очередь не только питается плодами науки, но и сама ставит перед ней новые задачи и вооружает ее средствами, которые в трудновообразимой степени расширяют границы нашего познания.

Очевидно, что целью индустриализации нашего общества является замена труда человека на труд машины. Информатизация общества ведёт к замене интеллекта человека на интеллект машины. Автоматизация, доведённая до абсолюта, предполагает полное отчуждение человека от выполнения рутинных интеллектуальных задач.

Собственно и сама система моделирования автоматизированного производства и автоматизированного решения сервисных задач должна обладать искусственным интеллектом. Внедрение такой системы должно оставить за человеком только творческие задачи, полностью автоматизировав рутинные операции по управлению современным производством.

Такая система должна обладать набором знаний и способностей, сопоставимым с качествами современного аналитика или ученого среднего уровня. В таком случае искусственный интеллект будет уже не системой управления данными как в ХХ веке, а системой управления знаниями, обеспечивающей представление и обработку формализованных моделей ситуаций сопоставимых с моделями, которые рисует сознание человека.

Все современные достижения техники являются результатом приложения, использования фундаментальных открытий науки. В сжатой форме сказанное можно сформулировать так: человеческий разум – это проявление высшего уровня, которого достигла материя в процессе эволюции нашего мира. Это мощнейшая из всех известных сил, так как она овладевает всеми прочими силами природы, вызывает к жизни такие из них – например, атомную и термоядерную энергию, – каких не знал мир нашей планеты.

Мощь этой силы хорошо охарактеризована в ставших крылатыми словах Эйнштейна: «Величайшая из загадок это то, что наш мир познаваем». Превращение этой загадки в действительность и осуществляется силой нашего разума, для которой мы не видим границ ее познавательных возможностей. Формой действия такой силы является наука. А техника служит орудием, инструментом, посредством которого эта сила используется для нужд человечества.

Рассмотренная выше классификация соотношения науки и техники является в определенной степени условной. Наряду с ней существуют и другие, так например

Г. Беме выделяет три фазы в развитии соотношения науки и техники в применении к Западной Европе. Первая фаза (1660—1750 гг.) начинается в эпоху расцвета абсолютизма. Это эпоха дифференциации сфер науки и техники и, вместе с тем, определенной ориентации науки на технику. Появляется техника научных инструментов, формируется технический принцип познания в виде механической картины мира. Вторая фаза начинается с промышленной революции и охватывает весь XX век. Развитие техники вызывает спрос на науку, что в свою очередь приводит к онаучиванию техники. Научные приборы и инструменты, методы исследования начинают проникать в технику. На третьей фазе взаимный обмен знаниями и практическим опытом между наукой и техникой становится систематическим и стратегически планируемым. Разработка техники осуществляется через построение научной теории. Этот процесс начался во второй половине XIX века и играет все большую роль в XX веке.

Рассматривая процесс эволюции науки и техники и взаимоотношения между ними, П. Вайнгард определяет также три фазы этого процесса. Рассмотрим его взгляд на этот процесс в сравнении с авторитетным мнением отечественного исследователя этого вопроса Б.И.Козлова. Как пишет Козлов в своей работе «Возникновение и развитие технических наук»: «Три составляющих определили течение процесса становления научно-технического знания современного типа на протяжении всего XIX в. Во-первых, развитие реальной технической деятельности и ее ведущей стороны – материального производства; во-вторых, вызванная социальным заказом, сложившимся в период промышленной революции, коренная перестройка структуры научно-технического знания и деятельности по его производству и применению; в-третьих, развитие естественных наук и математики, в значительной мере обусловленное тем же материальным производством, но протекающее в соответствии со своими собственными внутренними закономерностями»[19 - Козлов Б. И. Возникновение и развитие технических наук, Ленинград, Издательство НАУКА, 1988, С.67].
<< 1 2 3 >>
На страницу:
2 из 3

Другие аудиокниги автора Алексей Ярцев