16. Potamogeton lonchites. Ireland, Mr. Arthur Bennett informs me that this is certainly not British or European, but may possibly be identical with P. fluitansvar.Americanus of the U. States.
17. Potamogeton kirkii (natans sub.-sp.). W. Ireland. (Arctic Europe?)
18. Eriocaulon septangulare. W. Ireland, Skye, Hebrides (North America).
19. Carex buxbaumii. N. E. Ireland, on an island in Lough Neagh (Arctic and Alpine Europe, North America).
20. Deyeuxia neglecta (var.Hookeri). On the shores and islands of Lough Neagh. (And in Germany, Arctic Europe, and North America.)
We find here nine south-west European species which probably had a wider range in mild preglacial times, and have been preserved in the south and west of Ireland owing to its milder climate. It must be remembered that during the height of the glacial epoch Ireland was continental, so that these plants may have followed the retreating ice to their present stations and survived the subsequent depression. This seems more probable than that so many species should have reached Ireland for the first time during the last union with the continent subsequent to the glacial epoch. The Arctic, Alpine, and American plants may all be examples of species which once had a wider range, and which, owing to the more favourable conditions, have continued to exist in Ireland while becoming extinct in the adjacent parts of Britain and Western Europe.
As contrasted with the extreme scarcity of peculiar species among the flowering plants, it is the more interesting and unexpected to find a considerable number of peculiar mosses and Hepaticæ, some of which present us with phenomena of distribution of a very remarkable character. For the following lists and the information as to the distribution of the genera and species I am indebted to Mr. William Mitten, one of the first authorities on these beautiful little plants. That of the mosses has been corrected for this edition by Dr. R. Braithwaite, and several species of hepaticæ have been added by Mr. Mitten.
List of the Species of Mosses and Hepaticæ which are peculiar to the British Isles (or not found in Europe).
(Those belonging to non-European genera in Italics.)
Many of the above are minute or obscure plants, and are closely allied to other European species with which they may have been confounded. We cannot therefore lay any stress on these individually as being absent from the continent of Europe so much of which is imperfectly explored, though it is probable that several of them are really confined to Britain. But there are a few—indicated by italics—which are in a very different category; for they belong to genera which are altogether unknown in any other part of Europe, and their nearest allies are to be found in the tropics or in the southern hemisphere. The four non-European genera of mosses to which we refer all have their maximum of development in the Andes, while the three non-European Hepaticæ appear to have their maximum in the temperate regions of the southern hemisphere. Mr. Mitten has kindly furnished me with the following particulars of the distribution of these genera:—
Bartramidula. Asia, Africa, S. America and Australia, but not Europe or N. America.
Streptopogon is a comparatively small genus, with seven species in the Andes, one in the Himalayas, and three in the south temperate zone, besides our English species.
Daltonia is a large genus of inconspicuous mosses, having seventeen species in the Andes, two in Brazil, two in Mexico, one in the Galapagos, six in India and Ceylon, five in Java, two in Africa, and three in the Antarctic Islands, and one in Ireland.
Hookeria (restricting that term to the species referable to Cyclodictyon) is still a large genus of handsome and remarkable mosses, having twenty-six species in the Andes, eleven in Brazil, eight in the Antilles, one in Mexico, two in the Pacific Islands, one in New Zealand, one in Java, one in India, and five in Africa—besides our British species, which is found also in Madeira and the Azores but in no part of Europe proper.
These last two are very remarkable cases of distribution, since Mr. Mitten assures me that the plants are so markedly different from all other mosses that they would scarcely be overlooked in Europe.
The distribution of the non-European genera of Hepaticæ is as follows:—
Chasmatocolia. South America and Ireland.
Acrobolbus. A small genus found only in New Zealand and the adjacent islands, besides Ireland.
Petalophyllum. A small genus confined to Australia and New Zealand in the southern hemisphere, Algeria, and Ireland in the northern. We have also one of the Hepaticæ—Mastigophora Woodsii—found in Ireland and the Himalayas, but unknown in any part of continental Europe. The genus is most developed in New Zealand.
These are certainly very interesting facts, but they are by no means so exceptional in this group of plants as to throw any doubt upon their accuracy. The Atlantic islands present very similar phenomena in the Rhamphidium purpuratum, whose nearest allies are in the West Indies and South America; and in three species of Sciaromium, whose only allies are in New Zealand, Tasmania, and the Andes of Bogota. An analogous and equally curious fact is the occurrence in the Drontheim mountains in Central Norway, of a little group of four or five peculiar species of mosses of the genus Mnium, which are found nowhere else; although the genus extends over Europe, India, and the southern hemisphere, but always represented by a very few wide-ranging species except in this one mountain group![137 - I am indebted to Mr. Mitten for this curious fact.]
Such facts show us the wonderful delicacy of the balance of conditions which determine the existence of particular species in any locality. The spores of mosses and Hepaticæ are so minute that they must be continually carried through the air to great distances, and we can hardly doubt that, so far as its powers of diffusion are concerned, any species which fruits freely might soon spread itself over the whole world. That they do not do so must depend on peculiarities of habit and constitution, which fit the different species for restricted stations and special climatic conditions; and according as the adaptation is more general, or the degree of specialisation extreme, species will have wide or restricted ranges. Although their fossil remains have been rarely detected, we can hardly doubt that mosses have as high an antiquity as ferns or Lycopods; and coupling this antiquity with their great powers of dispersal we may understand how many of the genera have come to occupy a number of detached areas scattered over the whole earth, but always such as afford the peculiar conditions of climate and soil best suited to them. The repeated changes of temperature and other climatic conditions, which, as we have seen, occurred through all the later geological epochs, combined with those slower changes caused by geographical mutations, must have greatly affected the distribution of such ubiquitous yet delicately organised plants as mosses. Throughout countless ages they must have been in a constant state of comparatively rapid migration, driven to and fro by every physical and organic change, often subject to modification of structure or habit, but always seizing upon every available spot in which they could even temporarily maintain themselves.[138 - The following remarks by Dr. Richard Spruce, who has made a special study of mosses and especially of hepaticæ, are of interest. "From what precedes, I conclude that no existing agency is capable of transporting the germs of our hepatics of tropical type from the torrid zone to Britain, and I venture to suppose that their existence at Killarney dates from the remote period when the vegetation of the whole northern hemisphere partook of a tropical character. If I am challenged to account for their survival through the last glacial period, I reply that, granting even the existence of a universal ice-cap down to the latitude of 40° in America and 50° in Europe, it is not to be assumed that the whole extent, even of land, was perennially entombed 'in thrilling regions of thick-ribbed ice.' Towards the southern margin of the ice the climate was probably very similar to that of Greenland and the northern part of Norway at the present day. The summer sun would have great power, and on the borders of sheltered fjords the frozen snow would disappear completely, if only for a very short period, and I ask only for a month or two, not doubting the capacity of our hepatics to survive in a dormant state under the snow for at least ten months in the year. I have gathered mosses in the Pyrenees where the snow had barely left them on August 2nd; by September 25th they were re-covered with snow, and would not be again uncovered till the following year. The mosses of Killarney might even enjoy a longer summer than this; for the gulf-stream laves both sides of the south-western angle of Ireland, and its tepid waters would exert great melting power on the ice-bound coast, preventing at the same time any formation of ice in the sea itself." This passage is the conclusion of a very interesting discussion on the distribution of hepaticæ in a paper on "A New Hepatic from Killarney," in the Journal of Botany, vol. 25, (Feb. 1887), pp. 33-82, in which many curious facts are given as to the habits and distribution of these curious and beautiful little plants.]
Here then we have a group in which there is no question of the means of dispersal; and where the difficulties that present themselves are not how the species reached the remote localities in which they are now found, but rather why they have not established themselves in many other stations which, so far as we can judge, seem equally suitable to them. Yet it is a curious fact, that the phenomena of distribution actually presented by this group do not essentially differ from those presented by the higher flowering plants which have apparently far less diffusive power, as we shall find when we come to treat of the floras of oceanic islands; and we believe that the explanation of this is, that the life of species, and especially of genera, is often so prolonged as to extend over whole cycles of such terrestrial mutations as we have just referred to; and that thus the majority of plants are afforded means of dispersal which are usually sufficient to carry them into all suitable localities on the globe. Hence it follows that their actual existence in such localities depends mainly upon vigour of constitution and adaptation to conditions just as it does in the case of the lower and more rapidly diffused groups, and only partially on superior facilities for diffusion. This important principle will be used further on to afford a solution of some of the most difficult problems in the distribution of plant life.[139 - While these pages are passing through the press I am informed by my friend Mr. W. H. Beeby that in the Shetland Isles, where he has been collecting for five summers, he has found several plants new to the British flora, and a few altogether undescribed. Among these latter is a very distinct species of Hieracium (H. Zetlandicum), which is quite unknown in Scandinavia, and is almost certainly peculiar to the British Islands. Here we have another proof that entirely new species are still to be discovered in the remoter portions of our country.]
Concluding Remarks on the Peculiarities of the British Fauna and Flora.—The facts, now I believe for the first time brought together, respecting the peculiarities of the British fauna and flora, are sufficient to show that there is considerable scope for the study of geographical distribution even in so apparently unpromising a field as one of the most recent of continental islands. Looking at the general bearing of these facts, they prove, that the idea so generally entertained as to the biological identity of the British Isles with the adjacent continent is not altogether correct. Among birds we have undoubted peculiarities in at least three instances; peculiar fishes are much more numerous, and in this case the fact that the Irish species are almost all different from the British, and those of the Orkneys distinct from those of Scotland, renders it almost certain that the great majority of the fifteen peculiar British fishes are really peculiar and will never be found on the European Continent. The mosses and Hepaticæ also have been sufficiently collected in Europe to render it pretty certain that the more remarkable of the peculiar British forms are not found there; why therefore, it may be well asked, should there not be a proportionate number of peculiar British insects? It is true that numerous species have been first discovered in Britain, and, subsequently, on the continent; but we have many species which have been known for twenty, thirty, or forty years, some of which are not rare with us, and yet have never been found on the continent. We have also the curious fact of our outlying islands, such as the Shetland Isles, the Isle of Man, and the little Lundy Island, possessing each some peculiar forms which, certainly, do not exist on our principal island which has been so very thoroughly worked. Analogy, therefore, would lead us to conclude that many other species or varieties would exist on our islands and not on the continent; and when we find that a very large number (150) in three orders only, are so recorded, we may I think be sure that some considerable portion of these (though how many we cannot say) are really endemic British species.
The general laws of distribution also lead us to expect such phenomena. Very rare and very local species are such as are becoming extinct; and it is among insects, which are so excessively varied and abundant, which present so many isolated forms, and which, even on continents, afford numerous examples of very rare species confined to restricted areas, that we should have the best chance of meeting with every degree of rarity down to the point of almost complete extinction. But we know that in all parts of the world islands are the refuge of species or groups which have become extinct elsewhere; and it is therefore in the highest degree probable that some species which have ceased to exist on the continent should be preserved in some part or other of our islands, especially as these present favourable climatic conditions such as do not exist elsewhere.
There is therefore a considerable amount of harmony in the various facts adduced in this chapter, as well as a complete accordance with what the laws of distribution in islands would lead us to expect. In proportion to the species of birds and fresh-water fishes, the number of insect-forms is enormously great, so that the numerous species or varieties here recorded as not yet known on the continent are not to be wondered at; while it would, I think, be almost an anomaly if, with peculiar birds and fishes there were not a fair proportion of peculiar insects. Our entomologists should, therefore, give up the assumption, that all our insects do exist on the continent, and will some time or other be found there, as not in accordance either with the evidence or the probabilities of the case; and when this is done, and the interesting peculiarities of some of our smaller islands are remembered, the study of our native animals and plants, in relation to those of other countries, will acquire a new interest. The British Isles are said to consist of more than a thousand islands and islets. How many of these have ever been searched for insects? With the case of Lundy Island before us, who shall say that there is not yet scope for extensive and interesting investigations into the British fauna and flora?
CHAPTER XVII
BORNEO AND JAVA
Position and Physical Features of Borneo—Zoological Features of Borneo: Mammalia—Birds—The Affinities of the Bornean Fauna—Java, its Position and Physical Features—General Character of the Fauna of Java—Differences Between the Fauna of Java and that of the other Malay Islands—Special Relations of the Javan Fauna to that of the Asiatic Continent—Past Geographical Changes of Java and Borneo—The Philippine Islands—Concluding Remarks on the Malay Islands.
As a representative of recent continental islands situated in the tropics, we will take Borneo, since, although perhaps not much more ancient than Great Britain, it presents a considerable amount of speciality; and, in its relations to the surrounding islands and the Asiatic continent, offers us some problems of great interest and considerable difficulty.
The accompanying map shows that Borneo is situated on the eastern side of a submarine bank of enormous extent, being about 1,200 miles from north to south, and 1,500 from east to west, and embracing Java, Sumatra, and the Malay Peninsula. This vast area is all included within the 100 fathom line, but by far the larger part of it—from the Gulf of Siam to the Java Sea—is under fifty fathoms, or about the same depth as the sea that separates our own island from the continent. The distance from Borneo to the southern extremity of the Malay Peninsula is about 350 miles, and it is nearly as far from Sumatra and Java, while it is more than 600 miles from the Siamese Peninsula, opposite to which its long northern coast extends. There is, I believe, nowhere else upon the globe, an island so far from a continent, yet separated from it by so shallow a sea. Recent changes of sea and land must have occurred here on a grand scale, and this adds to the interest attaching to the study of this large island.
MAP OF BORNEO AND JAVA, SHOWING THE GREAT SUBMARINE BANK OF SOUTH-EASTERN ASIA.
The light tint shows a less depth than 100 fathoms.
The figures show the depth of the sea in fathoms.
The internal geography of Borneo is somewhat peculiar. A large portion of its surface is lowland, consisting of great alluvial valleys which penetrate far into the interior; while the mountains except in the north, are of no great elevation, and there are no extensive plateaux. A subsidence of 500 feet would allow the sea to fill the great valleys of the Pontianak, Banjarmassing, and Coti rivers, almost to the centre of the island, greatly reducing its extent, and causing it to resemble in form the island of Celebes to the east of it.
In geological structure Borneo is thoroughly continental, possessing formations of all ages, with basalt and crystalline rocks, but no recent volcanoes. It possesses vast beds of coal of Tertiary age; and these, no less than the great extent of alluvial deposits in its valleys, indicate great changes of level in recent geological times.
Having thus briefly indicated those physical features of Borneo which are necessary for our inquiry, let us turn to the organic world.
Neither as regards this great island nor those which surround it, have we the amount of detailed information in a convenient form that is required for a full elucidation of its past history. We have, however, a tolerable acquaintance with the two higher groups—mammalia and birds, both of Borneo and of all the surrounding countries, and to these alone will it be necessary to refer in any detail. The most convenient course, and that which will make the subject easiest for the reader, will be to give, first, a connected sketch of what is known of the zoology of Borneo itself, with the main conclusions to which they point; and then to discuss the mutual relations of some of the adjacent islands, and the series of geographical changes that seem required to explain them.
Zoological Features of Borneo
Mammalia.—Nearly a hundred and forty species of mammalia have been discovered in Borneo, and of these more than three-fourths are identical with those of the surrounding countries, and more than one half with those of the continent. Among these are two lemurs, nine civets, five cats, five deer, the tapir, the elephant, the rhinoceros, and many squirrels, an assemblage which could certainly only have reached the country by land. The following species of mammalia are supposed to be peculiar to Borneo:—
Of the twenty-nine peculiar species here enumerated it is possible that a few may be found to be identical with those of Malacca or Sumatra; but there are also four peculiar genera which are less likely to be discovered elsewhere. These are Nasalis, the remarkable long-nosed monkey; Rheithrosciurus, a peculiar form of squirrel; and Trichys, a tailless porcupine. These peculiar forms do not, however, imply that the separation of the island from the continent is of very ancient date, for the country is so vast and so much of the once connecting land is covered with water, that the amount of speciality is hardly, if at all, greater than occurs in many continental areas of equal extent and remoteness. This will be more evident if we consider that Borneo is as large as the Indo-Chinese Peninsula, or as the Indian Peninsula south of Bombay, and if either of these countries were separated from the continent by the submergence of the whole area north of them as far as the Himalayas, they would be found to contain quite as many peculiar genera and species as Borneo actually does now. A more decisive test of the lapse of time since the separation took place is to be found in the presence of a number of representative species closely allied to those of the surrounding countries, such as the tailed monkeys and the numerous squirrels. These relationships, however, are best seen among the birds, which have been more thoroughly collected and more carefully studied than the mammalia.
Birds.—About 580 species of birds are now known to inhabit Borneo, of which 420 species are land-birds.[140 - In the first edition of this work the numbers were 400 and 340, showing the great increase of our knowledge during the last ten years, chiefly owing to the researches of Mr. A. H. Everett in Sarawak and Mr. John Whitehead in North Borneo and the great mountain Kini Balu.] One hundred and eight species are supposed to be peculiar to the island, and of these one half have been noted, either by Count Salvadori or Mr. Everett, as being either representative species of, or closely allied to birds inhabiting other islands or countries. The majority of these are, as might be expected, allied to species inhabiting the surrounding countries, especially Sumatra, the Malay Peninsula, or Java, a smaller number having their representative forms in the Philippine Islands or Celebes. But there is another group of eight species whose nearest allies are found in such remote lands as Ceylon, North India, Burma, or China. These last have been indicated in the following list by a double star (**) while those which are representative of forms found in the immediately surrounding area, and are in many cases very slightly differentiated from their allies, are indicated by a single star (*).
List of Birds which are supposed to be peculiar to Borneo.
Representative forms of the same character as those noted above are found in all extensive continental areas, but they are rarely so numerous. Thus, in Mr. Elwes' paper on the "Distribution of Asiatic Birds," he states that 12.5 per cent. of the land birds of Burmah and Tenasserim are peculiar species, whereas we find that in Borneo they are about 25 per cent., and the difference may fairly be imputed to the greater proportion of slightly modified representative species due to a period of complete isolation. Of peculiar genera, the Indo-Chinese Peninsula has one—Ampeliceps, a remarkable yellow-crowned starling, with bare pink-coloured orbits; while two others, Temnurus and Crypsirhina—singular birds allied to the jays—are found in no other part of the Asiatic continent though they occur in some of the Malay Islands. Borneo has seven peculiar genera of passeres,[141 - These are Allocotops, Chlorocharis, Androphilus, and Ptilopyga, among the Timeliidæ; Tricophoropsis and Oreoctistes among the Brachypodidæ; Chlamydochœra among the Campophagidæ.] as well as Hæmatortyx, a crested partridge; and Lobiophasis, a pheasant hardly distinct from Euplocamus; while two others, Pityriasis, an extraordinary bare-headed bird between a jay and a shrike, and Carpococcyx, a pheasant-like ground cuckoo formerly thought to be peculiar, are said to have been discovered also in Sumatra.
The insects and land-shells of Borneo and of the surrounding countries are too imperfectly known to enable us to arrive at any accurate results with regard to their distribution. They agree, however, with the birds and mammals in their general approximation to Malayan forms, but the number of peculiar species is perhaps larger.
The proportion here shown of less than one-fourth peculiar species of mammalia and fully one-fourth peculiar species of land-birds, teaches us that the possession of the power of flight affects but little the distribution of land-animals, and gives us confidence in the results we may arrive at in those cases where we have, from whatever cause, to depend on a knowledge of the birds alone. And if we consider the wide range of certain groups of powerful flight—as the birds of prey, the swallows and swifts, the king-crows, and some others, we shall be forced to conclude that the majority of forest-birds are restricted by even narrow watery barriers, to an even greater extent than mammalia.
The Affinities of the Bornean Fauna.—The animals of Borneo exhibit an almost perfect identity in general character, and a close similarity in species, with those of Sumatra and the Malay Peninsula. So great is this resemblance that it is a question whether it might not be quite as great were the whole united; for the extreme points of Borneo and Sumatra are 1,500 miles apart—as far as from Madrid to Constantinople, or from the Missouri valley to California. In such an extent of country we always meet with some local species, and representative forms, so that we hardly require any great lapse of time as an element in the production of the peculiarities we actually find. So far as the forms of life are concerned, Borneo, as an island, may be no older than Great Britain; for the time that has elapsed since the glacial epoch would be amply sufficient to produce such a redistribution of the species, consequent on their mutual relations being disturbed, as would bring the islands into their present zoological condition. There are, however, other facts to be considered, which seem to imply much greater and more complex revolutions than the recent separation of Borneo from Sumatra and the Malay Peninsula, and that these changes must have been spread over a considerable lapse of time. In order to understand what these changes probably were, we must give a brief sketch of the fauna of Java, the peculiarities of which introduce a new element into the question we have to discuss.
Java
The rich and beautiful island of Java, interesting alike to the politician, the geographer, and the naturalist, is more especially attractive to the student of geographical distribution, because it furnishes him with some of the most curious anomalies and difficult problems in a place where such would be least expected. As Java forms with Sumatra one almost unbroken line of volcanoes and volcanic mountains, interrupted only by the narrow Straits of Sunda, we should naturally expect a close resemblance between the productions of the two islands. But in point of fact there is a much greater difference between them than between Sumatra and Borneo, so much further apart, and so very unlike in physical features.[142 - In a letter from Darwin he says:—"Hooker writes to me, 'Miguel has been telling me that the flora of Sumatra and Borneo are identical, and that of Java quite different.'"] Java differs from the three great land masses—Borneo, Sumatra, and the Malay Peninsula, far more than either of these do from each other; and this is the first anomaly we encounter. But a more serious difficulty than this remains to be stated. Java has certain close resemblances to the Siamese Peninsula, and also to the Himalayas, which Borneo and Sumatra do not exhibit to so great a proportionate extent; and looking at the relative position of these lands respectively, this seems most incomprehensible. In order fully to appreciate the singularity and difficulty of the problem, it will be necessary to point out the exact nature and amount of these peculiarities in the fauna of Java.
General Character of the Fauna of Java.—If we were only to take account of the number of peculiar species in Java, and the relations of its fauna generally to that of the surrounding lands, we might pass it over as a less interesting island than Borneo or Sumatra. Its mammalia (ninety species) are nearly as numerous as those of Borneo, but are apparently less peculiar, none of the genera and only five or six of the species being confined to the island. In land-birds it is decidedly less rich, having only 300 species, of which about forty-five are peculiar, and only one or two belong to peculiar genera; so that here again the amount of speciality is considerably less than in Borneo. It is only when we proceed to analyse the species of the Javan fauna, and trace their distribution and affinities, that we discover its interesting nature.
Difference Between the Fauna of Java and that of the other great Malay Islands.—Comparing the fauna of Java with that which may be called the typical Malayan fauna as exhibited in Borneo, Sumatra, and the Malay Peninsula, we find the following differences. No less than thirteen genera of mammalia, each of which is known to inhabit at least two, and generally all three, of the above-named Malayan countries, are totally absent from Java; and they include such important forms as the elephant, the tapir, and the Malay bear. It cannot be said that this difference depends on imperfect knowledge, for Java is one of the oldest European settlements in the East, and has been explored by a long succession of Dutch and English naturalists. Every part of it is thoroughly well known, and it would be almost as difficult to find a new mammal of any size in Europe as in Java. Of birds there are twenty-five genera, all typically Malayan and occurring at least in two, and for the most part in all three of the Malay countries, which are yet absent from Java. Most of these are large and conspicuous forms, such as jays, gapers, bee-eaters, woodpeckers, hornbills, cuckoos, parrots, pheasants, and partridges, as impossible to have remained undiscovered in Java as the large mammalia above referred to.