Оценить:
 Рейтинг: 0

Origin of Cultivated Plants

Год написания книги
2017
<< 1 2 3 4 5 6 ... 118 >>
На страницу:
2 из 118
Настройки чтения
Размер шрифта
Высота строк
Поля

The principal difficulty, which commonly occurs in the case of ancient historians, is to find the exact translation of the names of plants, which in their books always bear the common names. I shall speak presently of the value of these names and how the science of language may be brought to bear on the questions with which we are occupied, but I must first indicate those historical notions which are most useful in the study of cultivated plants.

Agriculture came originally, at least so far as the principal species are concerned, from three great regions, in which certain plants grew, regions which had no communication with each other. These are – China, the south-west of Asia (with Egypt), and intertropical America. I do not mean to say that in Europe, in Africa, and elsewhere savage tribes may not have cultivated a few species locally, at an early epoch, as an addition to the resources of hunting and fishing; but the great civilizations based upon agriculture began in the three regions I have indicated. It is worthy of note that in the old world agricultural communities established themselves along the banks of the rivers, whereas in America they dwelt on the high lands of Mexico and Peru. This may perhaps have been due to the original situation of the plants suitable for cultivation, for the banks of the Mississippi, of the Amazon, of the Orinoco, are not more unhealthy than those of the rivers of the old world.

A few words about each of the three regions.

China had already possessed for some thousands of years a flourishing agriculture and even horticulture, when she entered for the first time into relations with Western Asia, by the mission of Chang-Kien, during the reign of the Emperor Wu-ti, in the second century before the Christian era. The records, known as Pent-sao, written in our Middle Ages, state that he brought back the bean, the cucumber, the lucern, the saffron, the sesame, the walnut, the pea, spinach, the water-melon, and other western plants,[13 - Bretscheider, On the Study and Value, etc., p. 15.] then unknown to the Chinese. Chang-Kien, it will be observed, was no ordinary ambassador. He considerably enlarged the geographical knowledge, and improved the economic condition of his countrymen. It is true that he was constrained to dwell ten years in the West, and that he belonged to an already civilized people, one of whose emperors had, 2700 B.C., consecrated with imposing ceremonies the cultivation of certain plants. The Mongolians were too barbarous, and came from too cold a country, to have been able to introduce many useful species into China; but when we consider the origin of the peach and the apricot, we shall see that these plants were brought into China from Western Asia, probably by isolated travellers, merchants or others, who passed north of the Himalayas. A few species spread in the same way into China from the West before the embassy of Chang-Kien.

Regular communication between China and India only began in the time of Chang-Kien, and by the circuitous way of Bactriana;[14 - Ibid.] but gradual transmissions from place to place may have been effected through the Malay Peninsula and Cochin-China. The writers of Northern China may have been ignorant of them, and especially since the southern provinces were only united to the empire in the second century before Christ.[15 - Ibid., p. 23.]

Regular communications between China and Japan only took place about the year 57 of our era, when an ambassador was sent; and the Chinese had no real knowledge of their eastern neighbours until the third century, when the Chinese character was introduced into Japan.[16 - Atsuma-gusa.Recueil pour servir à la connaissance de l’extrême Orient, Turretini, vol. vi., pp. 200, 293.]

The vast region which stretches from the Ganges to Armenia and the Nile was not in ancient times so isolated as China. Its inhabitants exchanged cultivated plants with great facility, and even transported them to a distance. It is enough to remember that ancient migrations and conquests continually intermixed the Turanian, Aryan, and Semitic peoples between the Caspian Sea, Mesopotamia, and the Nile. Great states were formed nearly at the same time on the banks of the Euphrates and in Egypt, but they succeeded to tribes which had already cultivated certain plants. Agriculture is older in that region than Babylon and the first Egyptian dynasties, which date from more than four thousand years ago. The Assyrian and Egyptian empires afterwards fought for supremacy, and in their struggles they transported whole nations, which could not fail to spread cultivated species. On the other hand, the Aryan tribes who dwelt originally to the north of Mesopotamia, in a land less favourable to agriculture, spread westward and southward, driving out or subjugating the Turanian and Dravidian nations. Their speech, and those which are derived from it in Europe and Hindustan, show that they knew and transported several useful species.[17 - There are in the French language two excellent works, which give the sum of modern knowledge with regard to the East and Egypt. The one is the Manuel de l’Histoire Ancienne de l’Orient, by François Lenormand, 3 vols. in 12mo, Paris, 1869; the other, L’Histoire Ancienne des Peuples de l’Orient, by Maspero, 1 vol. in 8vo, Paris, 1878.] After these ancient events, of which the dates are for the most part uncertain, the voyages of the Phœnicians, the wars between the Greeks and Persians, Alexander’s expedition into India, and finally the Roman rule, completed the spread of cultivation in the interior of Western Asia, and even introduced it into Europe and the north of Africa, wherever the climate permitted.

Later, at the time of the crusades, very few useful plants yet remained to be brought from the East. A few varieties of fruit trees which the Romans did not possess, and some ornamental plants, were, however, then brought to Europe.

The discovery of America in 1492 was the last great event which caused the diffusion of cultivated plants into all countries. The American species, such as the potato, maize, the prickly pear, tobacco, etc., were first imported into Europe and Asia. Then a number of species from the old world were introduced into America. The voyage of Magellan (1520-1521) was the first direct communication between South America and Asia. In the same century the slave trade multiplied communications between Africa and America. Lastly, the discovery of the Pacific Islands in the eighteenth century, and the growing facility of the means of communication, combined with a general idea of improvement, produced that more general dispersion of useful plants of which we are witnesses at the present day.

5. Philology. The common names of cultivated plants are usually well known, and may afford indications touching the history of a species, but there are examples in which they are absurd, based upon errors, or vague and doubtful, and this involves a certain caution in their use.

I could quote a number of such names in all languages; it is enough to mention, in French, blé de Turquie, maize, a plant which is not a wheat, and which comes from America; in English, Jerusalem artichoke (Helianthus tuberosus), which does not come from Jerusalem, but from North America, and is no artichoke.

A number of names given to foreign plants by Europeans when they are settled in the colonies, express false or insignificant analogies. For instance, the New Zealand flax resembles the true flax as little as possible; it is merely that a textile substance is obtained from its leaves. The mahogany apple (cashew) of the French West India Isles is not an apple, nor even the fruit of a pomaceous tree, and has nothing to do with mahogany.

Sometimes the common names have changed, in passing from one language to another, in such a manner as to give a false or absurd meaning. Thus the tree of Judea of the French (Cercis Siliquastrum) has become the Judas tree in English. The fruit called by the Mexicans ahuaca, is become the avocat (lawyer) of the French colonists.

Not unfrequently names of plants have been taken by the same people at successive epochs or in different provinces, sometimes as generic, sometimes as specific names. The French word blé, for instance, may mean several species of the genus Triticum, and even of very different nutritious plants (maize and wheat), or a given species of wheat.

Several common names have been transferred from one plant to another through error or ignorance. Thus the confusion made by early travellers between the sweet potato (Convolvulus Batatas) and the potato (Solanum tuberosum) has caused the latter to be called potato in English and patatas in Spanish.

If modern, civilized peoples, who have great facilities for comparing species, learning their origin and verifying their names in books, have made such mistakes, it is probable that ancient nations have made many and more grave errors. Scholars display vast learning in explaining the philological origin of a name, or its modifications in derived languages, but they cannot discover popular errors or absurdities. It is left for botanists to discover and point them out. We may note, in passing, that the double or compound names are the most doubtful. They may consist of two mistakes; one in the root or principal name, the other in the addition or accessory name, destined almost always to indicate the geographical origin, some visible quality, or some comparison with other species. The shorter a name is, the better it merits consideration in questions of origin or antiquity; for it is by the succession of years, of the migrations of peoples, and of the transport of plants, that the addition of often erroneous epithets takes place. Similarly, in symbolic writing, like that of the Chinese and the Egyptians, unique and simple signs indicate long-known species, not imported from foreign countries, while complicated signs are doubtful or indicate a foreign origin. We must not forget, however, that the signs have often been rebuses, based on chance resemblances in the words, or on superstitious and fanciful ideas.

The identity of a common name for a given species in several languages may have two very different explanations. It may be because a plant has been spread by a people which has been dispersed and scattered. It may also result from the transmission of a plant from one people to another with the name it bore in its original home. The first case is that of the hemp, of which the name is similar, at least as to the root, in all the tongues derived from the primitive Aryan stock. The second is seen in the American name of tobacco, the Chinese of tea, which have spread into a number of countries, without any philological or ethnographic filiation. This case has occurred oftener in modern than in ancient times, because the rapidity of communications allows of the simultaneous introduction of a plant and of its name, even where the distance is great.

The diversity of names for the same species may also spring from various causes. As a rule, it indicates an early existence in different countries, but it may also arise from the mixture of races, or from names of varieties which take the place of the original name. Thus in England we find, according to the county, a Keltic, Saxon, Danish, or Latin name; and flax bears in Germany the names of flachs and lein, words which are evidently of different origin.

When we desire to make use of the common names to gather from them certain probabilities regarding the origin of species, it is necessary to consult dictionaries and the dissertations of philologists; but we must take into account the chances of error in these learned men, who, since they are neither cultivators nor botanists, may have made mistakes in the application of a name to a species.

The most considerable collection of common names is that of Nemnich, published in 1793.[18 - Nemnich, Allgemeines polyglotten-Lexicon der Naturgeschichte, 2 vols. in 4to.] I have another in manuscript which is yet more complete, drawn up in our library by an old pupil of mine, Moritzi, by means of floras and of several books of travel written by botanists. There are, besides, dictionaries of the names of the species in given countries or in some special language. This kind of glossary does not often contain explanations of etymology; but in spite of what Hehn[19 - Hehn, Kulturpflanzen und Hausthiere in ihren Uebergang aus Asien, in 8vo, 3rd edit. 1877.] may say, a naturalist possessed of an ordinary general education can recognize the connection or the fundamental differences between certain names in different languages, and need not confound modern with ancient languages. It is not necessary to be initiated into the mysteries of suffixes or affixes, of dentals and labials. No doubt the researches of a philologist into etymologies are more profound and valuable, but this is rarely necessary when our researches have to do with cultivated plants. Other sciences are more useful, especially that of botany; and philologists are more often deficient in these than naturalists are deficient in philology, for the very evident reason that more place is given to languages than to natural history in general education. It appears to me, moreover, that philologists, notably those who are occupied with Sanskrit, are always too eager to find the etymology of every name. They do not allow sufficiently for human stupidity, which has in all time given rise to absurd words, without any real basis, and derived only from error or superstition.

The filiation of modern European tongues is known to every one. That of ancient languages has, for more than half a century, been the object of important labours. Of these I cannot here give even a brief notice. It is sufficient to recall that all modern European languages are derived from the speech of the Western Aryans, who came from Asia, with the exception of Basque (derived from the Iberian language), Finnish, Turkish, and Hungarian, into which, moreover, words of Aryan origin have been introduced. On the other hand, several modern languages of India, Ceylon, and Java, are derived from the Sanskrit of the Eastern Aryans, who left Central Asia after the Western Aryans. It is supposed, with sufficient probability, that the first Western Aryans came into Europe 2500 B.C., and the Eastern Aryans into India a thousand years later.

Basque (or Iberian), the speech of the Guanchos of the Canary Isles, of which a few plant names are known, and Berber, are probably connected with the ancient tongues of the north of Africa.

Botanists are in many cases forced to doubt the common names attributed to plants by travellers, historians, and philologists. This is a consequence of their own doubts respecting the distinction of species and of the well-known difficulty of ascertaining the common name of a plant. The uncertainty becomes yet greater in the case of species which are more easily confounded or less generally known, or in the case of the languages of little-civilized nations. There are, so to speak, degrees of languages in this respect, and the names should be accepted more or less readily according to these degrees.

In the first rank, for certainty, are placed those languages which possess botanical works. For instance, it is possible to recognize a species by means of a Greek description by Dioscorides or Theophrastus, and by the less complete Latin texts of Cato, Columella, or Pliny. Chinese books also give descriptions. Dr. Bretschneider, of the Russian legation at Pekin, has written some excellent papers upon these books, from which I shall often quote.[20 - Bretschneider, On the Study and Value of Chinese Botanical Works, with Notes on the History of Plants and Geographical Botany from Chinese Sources, in 8vo, 51 pp., with illustrations, Foochoo, without date, but the preface bears the date Dec. 1870. Notes on Some Botanical Questions, in 8vo, 14 pp., 1880.]

The second degree is that of languages possessing a literature composed only of theological and poetical works, or of chronicles of kings and battles. Such works make mention here and there of plants, with epithets or reflections on their mode of flowering, their ripening, their use, etc., which allow their names to be divined, and to be referred to modern botanical nomenclature. With the added help of a knowledge of the flora of the country, and of the common names in the languages derived from the dead language, it is possible to discover approximately the sense of some words. This is the case with Sanskrit,[21 - Wilson’s dictionary contains names of plants, but botanists have more confidence in the names indicated by Roxburgh in his Flora Indica (edit. of 1832, 3 vols. in 8vo), and in Piddington’s English Index to the Plants of India, Calcutta, 1832. Scholars find a greater number of words in the texts, but they do not give sufficient proof of the sense of these words. As a rule, we have not in Sanskrit what we have in Hebrew, Greek, and Chinese – a quotation of phrases concerning each word translated into a modern language.] Hebrew,[22 - The best work on the plant-names in the Old Testament is that of Rosenmüller, Handbuch der biblischen Alterkunde, in 8vo, vol. iv., Leipzig, 1830. A good short work, in French, is La Botanique de la Bible, by Fred. Hamilton, in 8vo, Nice, 1871.] and Armenian.[23 - Reynier, a Swiss botanist, who had been in Egypt, has given the sense of many plant-names in the Talmud. See his volumes entitled Economie Publique et Rurale des Arabes et des Juifs, in 8vo, 1820; and Economie Publique et Rurale des Egyptiens et des Carthaginois, in 8vo, Lausanne, 1823. The more recent works of Duschak and Löw are not based upon a knowledge of Eastern plants, and are unintelligible to botanists because of names in Syriac and Hebrew characters.]

Lastly, a third category of dead languages offers no certainty, but merely presumptions or hypothetical and rare indications. It comprehends those tongues in which there is no written work, such as Keltic, with its dialects, the ancient Sclavonic, Pelasgic, Iberian, the speech of the primitive Aryans, Turanians, etc. It is possible to guess certain names or their approximate form in these dead languages by two methods, both of which should be employed with caution.

The first and best is to consult the languages derived, or which we believe to be derived, directly from the ancient tongues, as Basque for the Iberian language, Albanian for the Pelasgic, Breton, Erse, and Gaelic for Keltic. The danger lies in the possibility of mistake in the filiation of the languages, and especially in a mistaken belief in the antiquity of a plant-name which may have been introduced by another people. Thus the Basque language contains many words which seem to have been taken from the Latin at the time of the Roman rule. Berber is full of Arab words, and Persian of words of every origin, which probably did not exist in Zend.

The other method consists in reconstructing a dead language which had no literature, by means of those which are derived from it; for instance, the speech of the Western Aryans, by means of the words common to several European languages which have sprung from it. Fick’s dictionary will hardly serve for the words of ancient Aryan languages, for he gives but few plant-names, and his arrangement renders it unintelligible to those who have no knowledge of Sanskrit. Adolphe Pictet’s work[24 - Adolphe Pictet, Les Origines des Peuples Indo-Européens, 3 vols, in 8vo, Paris, 1878.] is far more important to naturalists, and a second edition, augmented and improved, has been published since the author’s death. Plant-names and agricultural terms are explained and discussed in this work, in a manner all the more satisfactory that an accurate knowledge of botany is combined with philology. If the author attributes perhaps too much importance to doubtful etymologies, he makes up for it by other knowledge, and by his excellent method and lucidity.

The plant-names of the Euskarian or Basque language have been considered from the point of view of their probable etymology by the Comte de Charencey, in Les Actes de la Société Philologique (vol. i. No. 1, 1869). I shall have occasion to quote this work, of which the difficulties were great, in the absence of all literature and of all derived languages.

6. The necessity for combining the different methods. The various methods of which I have spoken are of unequal value. It is clear that when we have archæological records about a given species, like those of the Egyptian monuments, or of the Swiss lake-dwellings, these are facts of remarkable accuracy. Then come the data furnished by botany, especially those on the spontaneous existence of a species in a given country. These, if examined with care, may be very important. The assertions contained in the works of historians or even of naturalists respecting an epoch at which science was only beginning, have not the same value. Lastly, the common names are only an accessory means, especially in modern languages, and a means which, as we have seen, is not entirely trustworthy. So much may be said in a general way, but in each particular case one method or the other may be more or less important.

Each can only lead to probabilities, since we are dealing with facts of ancient date which are beyond the reach of direct and actual observation. Fortunately, if the same probability is attained in three or four different ways, we approach very near to certainty. The same rule holds good for researches into the history of plants as for researches into the history of nations. A good author consults historians who have spoken of events, the archives in which unpublished documents are found, the inscriptions on ancient monuments, the newspapers, private letters, finally memoirs and even tradition. He gathers probabilities from every source, and then compares these probabilities, weighs and discusses them before deciding. It is a labour of the mind which requires intelligence and judgment. This labour differs widely from observation employed in natural history, and from pure reason which is proper to the exact sciences. Nevertheless, when, by several methods, we reach the same probability, I repeat that the latter is very nearly a certainty. We may even say that it is as much a certainty as historical science can pretend to attain.

I have the proof of this when I compare my present work with that which I composed by the same methods in 1855. For the species which I then studied, I have now more authorities and better authenticated facts, but my conclusions on the origin of each species have scarcely altered. As they were already based on a combination of methods, probabilities have usually become certainties, and I have not been led to conclusions absolutely contrary to those previously formed.

Archæological, philological, and botanical data become more and more numerous. By their means the history of cultivated plants is perfected, while the assertions of ancient authors lose instead of gaining in importance. From the discoveries of antiquaries and philologists, moderns are better acquainted than the Greeks with Chaldea and ancient Egypt. They can prove mistakes in Herodotus. Botanists on their side correct Theophrastus, Dioscorides, and Pliny from their knowledge of the flora of Greece and Italy, while the study of classical authors to which learned men have applied themselves for three centuries has already furnished all that it has to give. I cannot help smiling when, at the present day, savants repeat well-known Greek and Latin phrases, and draw from them what they call conclusions. It is trying to extract juice from a lemon which has already been repeatedly squeezed. We must say it frankly, the works which repeat and commentate on the ancient authors of Greece and Rome without giving the first place to botanical and archæological facts, are no longer on a level with the science of the day. Nevertheless, I could name several German works which have attained to the honour of a third edition. It would have been better to reprint the earlier publications of Fraas and Lenz, of Targioni and Heldreich, which have always given more weight to the modern data of botany, than to the vague descriptions of classic authors; that is to say, to facts than to words and phrases.

PART II.

On the Study of Species, considered as to their Origin, their early Cultivation, and the Principal Facts of their Diffusion.[25 - A certain number of species whose origin is well known, such as the carrot, sorrel, etc., are mentioned only in the summary at the beginning of the last part, with an indication of the principal facts concerning them.]

CHAPTER I.

PLANTS CULTIVATED FOR THEIR SUBTERRANEAN PARTS, SUCH AS ROOTS, TUBERCLES, OR BULBS.[26 - Some species are cultivated sometimes for their roots and sometimes for their leaves or seeds. In other chapters will be found species cultivated sometimes for their leaves (as fodder) or for their seeds, etc. I have classed them according to their commonest use. The alphabetical index refers to the place assigned to each species.]

Radish.—Raphanus sativus, Linnæus.

The radish is cultivated for what is called the root, which is, properly speaking, the lower part of the stem with the tap root.[27 - See the young state of the plant when the part of the stem below the cotyledons is not yet swelled. Turpin gives a drawing of it in the Annales des Sciences Naturelles, series 1, vol xxi. pl. 5.] Every one knows how the size, shape, and colour of those organs which become fleshy vary according to the soil or the variety.

There is no doubt that the species is indigenous in the temperate regions of the old world; but, as it has been cultivated in gardens from the earliest historic times, from China and Japan to Europe, and as it sows itself frequently round cultivated plots, it is difficult to fix upon its starting-point.

Formerly Raphanus sativus was confounded with kindred species of the Mediterranean region, to which certain Greek names were attributed; but Gay, the botanist, who has done a good deal towards eliminating these analogous forms,[28 - In A. de Candolle, Géogr. Bot. Raisonnée, p. 826.] considered R. sativus as a native of the East, perhaps of China. Linnæus also supposed this plant to be of Chinese origin, or at least that variety which is cultivated in China for the sake of extracting oil from the seeds.[29 - Linnæus, Spec. Plant, p. 935.] Several floras of the south of Europe mention the species as subspontaneous or escaped from cultivation, never as spontaneous. Ledebour had seen a specimen found near Mount Ararat, had sown the seeds of it and verified the species.[30 - Ledebour, Fl. Ross., i. p. 225.] However, Boissier,[31 - Boissier, Fl. Orient, i. p. 400.] in 1867, in his Eastern Flora, says that it is only subspontaneous in the cultivated parts of Anatolia, near Mersivan (according to Wied), in Palestine (on his own authority), in Armenia (according to Ledebour), and probably elsewhere, which agrees with the assertions found in European floras.[32 - Buhse, Aufzählung Transcaucasien, p. 30.] Buhse names a locality, the Ssahend mountains, to the south of the Caucasus, which appears to be far enough from cultivation. The recent Flora of British India[33 - Hooker, Flora of British India, i. p. 166.] and the earlier Flora of Cochin-China by Loureiro, mention the radish only as a cultivated species. Maximowicz saw it in a garden in the north-east of China.[34 - Maximowicz, Primitiæ Floræ Amurensis, p. 47.] Thunberg speaks of it as a plant of general cultivation in Japan, and growing also by the side of the roads,[35 - Thunberg, Fl. Jap., p. 263.] but the latter fact is not repeated by modern authors, who are probably better informed.[36 - Franchet and Savatier, Enum. Plant Jap., i. p. 39.]

Herodotus (Hist., 1. 2, c. 125) speaks of a radish which he calls surmaia, used by the builders of the pyramid of Cheops, according to an inscription upon the monument. Unger[37 - Unger, Pflanzen des Alten Ægyptens, p. 51, figs. 24 and 29.] copied from Lepsius’ work two drawings from the temple of Karnak, of which the first, at any rate, appears to represent the radish.

From all this we gather, first, that the species spreads easily from cultivation in the west of Asia and the south of Europe, while it does not appear with certainty in the flora of Eastern Asia; and secondly, that in the regions south of the Caucasus it is found without any sign of culture, so that we are led to suppose that the plant is wild there. From these two reasons it appears to have come originally from Western Asia between Palestine, Anatolia, and the Caucasus, perhaps also from Greece; its cultivation spreading east and west from a very early period.

The common names support these hypotheses. In Europe they offer little interest when they refer to the quality of the root (radis), or to some comparison with the turnip (ravanello in Italian, rabica in Spanish, etc.), but the ancient Greeks coined the special name raphanos (easily reared). The Italian word ramoraccio is derived from the Greek armoracia, which was used for R. sativus or some allied species. Modern interpreters have erroneously referred this name to Cochlearia Armoracia or horse-radish, which I shall come to presently. Semitic[38 - In my manuscript dictionary of common names, drawn from the floras of thirty years ago.] languages have quite different names (fugla in Hebrew, fuil, fidgel, figl, etc., in Arab.). In India, according to Roxburgh,[39 - Roxburgh, Fl. Ind., iii. p. 126.] the common name of a variety with an enormous root, as large sometimes as a man’s leg, is moola or moolee, in Sanskrit mooluka. Lastly, for Cochin-China, China, and Japan, authors give various names which differ very much one from the other. From this diversity a cultivation which ranged from Greece to Japan must be very ancient, but nothing can thence be concluded as to its original home as a spontaneous plant.

A totally different opinion exists on the latter point, which we must also examine. Several botanists[40 - Webb, Phytogr. Canar., p. 83; Iter. Hisp., p. 71; Bentham, Fl. Hong Kong, p. 17; Hooker, Fl. Brit. Ind., i. p. 166.] suspect that Raphanus sativus is simply a particular condition, with enlarged root and non-articulated fruit, of Raphanus raphanistrum, a very common plant in the temperate cultivated districts of Europe and Asia, and which is also found in a wild state in sand and light soil near the sea – for instance, at St. Sebastian, in Dalmatia, and at Trebizond.[41 - Willkomm and Lange, Prod. Fl. Hisp., iii. p. 748; Viviani, Flor. Dalmat., iii. p. 104; Boissier, Fl. Orient., i. p. 401.] Its usual haunts are in deserted fields; and many common names which signify wild radish, show the affinity of the two plants. I should not insist upon this point if their supposed identity were a mere presumption, but it rests upon experiments and observations which it is important to know.

In R. raphanistrum the siliqua is articulated, that is to say, contracted at intervals, and the seeds placed each in a division. In R. sativus the siliqua is continuous, and forms a single cavity. Some botanists had made this difference the basis of two distinct genera, Raphanistrum and Raphanus. But three accurate observers, Webb, Gay, and Spach, have noticed among plants of Raphanus sativus, raised from the same seed, both unilocular and articulated pods, some of them bilocular, others plurilocular. Webb[42 - Webb, Phytographia Canariensis, i. p. 83.] arrived at the same results when he afterwards repeated these experiments, and he observed yet another fact of some importance: the radish which sows itself by chance, and is not cultivated, produced the siliquæ of Raphanistrum.[43 - Webb, Iter. Hispaniense, 1838, p. 72.] Another difference between the two plants is in the root, fleshy in R. sativus, slender in R. raphanistrum; but this changes with cultivation, as appears from the experiments of Carrière, the head gardener of the nurseries of the Natural History Museum in Paris.[44 - Carrière, Origine des Plantes Domestiques démontrée par la Culture du Radis Sauvage, in 8vo, 24 pp., 1869.] It occurred to him to sow the seeds of the slender-rooted Raphanistrum in both stiff and light soil, and in the fourth generation he obtained fleshy radishes, of varied colour and form like those of our gardens. He even gives the figures, which are really curious and conclusive. The pungent taste of the radish was not wanting. To obtain these changes, Carrière sowed in September, so as to make the plant almost biennial instead of annual. The thickening of the root was the natural result, since many biennial plants have fleshy roots.

The inverse experiment remains to be tried – to sow cultivated radishes in a poor soil. Probably the roots would become poorer and poorer, while the siliquæ would become more and more articulated.

From all the experiments I have mentioned, Raphanus sativus might well be a variety of R. raphanistrum, an unstable variety determined by the existence of several generations in a fertile soil. We cannot suppose that ancient uncivilized peoples made essays like those of Carrière, but they may have noticed plants of Raphanistrum grown in richly manured soil, with more or less fleshy roots; and this soon suggested the idea of cultivating them.

I have, however, one objection to make, founded on geographical botany. Raphanus raphanistrum is a European plant which does not exist in Asia.[45 - Ledebour, Fl. Ross.; Boissier, Fl. Orient. Works on the flora of the valley of the Amur.] It cannot, therefore, be this species that has furnished the inhabitants of India, China, and Japan with the radishes which they have cultivated for centuries. On the other hand, how could R. raphanistrum, which is supposed to have been modified in Europe, have been transmitted in ancient times across the whole of Asia? The transport of cultivated plants has commonly proceeded from Asia into Europe. Chang-Kien certainly brought vegetables from Bactriana into China in the second century B.C., but the radish is not named among the number.

Horse-radish—Cochlearia Armoracia, Linnæus.
<< 1 2 3 4 5 6 ... 118 >>
На страницу:
2 из 118