Оценить:
 Рейтинг: 3.6

Интернет: Заметки научного сотрудника

Год написания книги
2010
<< 1 ... 3 4 5 6 7 8 9 10 11 ... 15 >>
На страницу:
7 из 15
Настройки чтения
Размер шрифта
Высота строк
Поля
—CH

– CH

—CH

—CH

ОН) и так далее, вплоть, скажем, до деканола (СH

—CH

– CH

—СH

—CH

—CH

—CH

—CH

—CH

—CH

ОН), то скорость окисления всех этих молекул будет примерно одинаковой.

Ситуация будет совершенно другой, если окисление этих молекул проводить ферментами. С удлинением цепи на каждую метиленовую группу (СН

) скорость ферментативной реакции будет возрастать примерно в десять раз. Иначе говоря, скорость окисления деканола будет в миллиард раз выше, чем скорость окисления метанола.

В этом и выражается специфичность ферментативного катализа. В данном случае – субстратная специфичность. Зависимость скорости ферментативной реакции от химической структуры субстрата. Разработка теории, объясняющей эти и подобные закономерности ферментативного катализа, и была сутью моей докторской диссертации, защищенной в 1977 году. Она называлась «Кинетико-термодинамические основы субстратной специфичности ферментативного катализа». На разработку этой теории ушло примерно девять лет начиная с моей дипломной работы, в которой описывались принципы субстратной специфичности двух ферментов – трипсина и химотрипсина. В моей кандидатской диссертации, через два с половиной года после защиты дипломной работы, описывалось в принципе то же самое, только на более обильном экспериментальном материале. Как я потом подсчитал, анализируя свой лабораторный журнал, вся моя кандидатская диссертация базировалась на экспериментах, которые я провел в течение всего двух недель. Все остальное – подготовительные опыты и неудавшиеся эксперименты. Но фишка в том, что заранее невозможно знать, что получится и что не получится. Знать бы прикуп…

К докторской диссертации в моем осмыслении принципов субстратной специфичности произошел качественный скачок. Помимо трипсина и химотрипсина я рассматривал еще десятка два других ферментов. Они катализировали совершенно другие реакции – гидролиза, переэтерификации, окисления. Причем катализировали превращения мономеров, олигомеров и полимеров. Как это все свести в одну теорию? Должен же быть какой-то общий принцип… И он нашелся. Я стал анализировать ферментативные реакции не химически, а физически, отвлекаясь от типа самих реакций. Я стал строить энергетические профили ферментативных реакций. И это позволило «уложить» все два десятка ферментов вкупе с сериями их субстратов в одну картину. Этот подход и описан в первом томе моего двухтомника «Ферментативный катализ», вышедшего в 1980 году и упомянутого выше. За это, в частности, мне и была присуждена Государственная премия СССР четыре года спустя.

Можно было в известных традициях академической науки продолжать разрабатывать эту нишу всю оставшуюся жизнь. Это давало бы гарантированное место в науке, гарантированные доклады на конференциях, симпозиумах и научных конгрессах, гарантированную научную школу, гарантированных учеников и все прочие гарантированные атрибуты академического толка. К моей теории придраться было, в общем-то, нельзя. Олесь Михайлович Полторак, профессор химического факультета МГУ, который был моим оппонентом на докторской диссертации и за которым ходила слава не только умнейшего и образованнейшего человека, но и совершенно въедливого критика, от которого пощады ждать не приходится, признался мне перед защитой, что ни к чему не может придраться. «У вас, – говорил, – диссертация, как шар, не за что укусить. Все так уложено и подогнано, что просто беда для оппонента».

Но меня после защиты понесло на другие темы: сначала ферментативный синтез антибиотиков, о чем уже выше писал, потом ферментативный гидролиз целлюлозы. Об этом еще расскажу. Это была моя любимая тема. Как вспомню, даже сейчас, много лет спустя, впадаю в мягкость, нежность и сентиментальность. Это – вершина бытия научным сотрудником в отношении предмета своих научных исследований.

16. Рецепт для юношей (и девушек), желающих защитить докторскую диссертацию

Много раз я слышал вопрос: а как вам удалось в 30 лет стать доктором наук? Прямо вот так: раз – и всё? Ведь обычно написание докторской диссертации – это труд немалого количества людей на протяжении долгого времени. Поэтому часто докторские защищают в пятидесяти-, а то и в шестидесятилетнем возрасте. Сорокалетние док тора – это уже штучный товар. А тут – в тридцать… Я, честно говоря, не знаю, как на такие вопросы отвечать конкретно. Ведь конкретный ответ – это своего рода рецепт. Освоил его – и пожалуйста, защищай тоже в тридцать. Я попытаюсь ответить вроде как концептуально.

Сначала – банальность: надо действительно много работать. Ведь просто накопить экспериментальный материал, а это сотни и тысячи экспериментов, если говорить о естественных науках – физике, химии, биологии, – надо время. Я обычно работал в лаборатории и по выходным, и часто и днями и ночами. В этом отношении, да и во всех остальных тоже, я безмерно признателен моей жене Гале. Мы вместе учились на химфаке МГУ не только на одном курсе, но и в одной группе, в один год поженились (что неудивительно, поскольку это было взаимно), в один год защитили кандидатские диссертации, только я защищал в МГУ, а она – в Московском физико-техническом институте, МФТИ, или Физтехе. Она профессионально понимала, что такое научная работа, и помогала мне, как могла. Она рисовала для меня диссертационные плакаты, брала на себя всякие организационные хлопоты, и главное – отпускала без протестов меня на работу в любое время суток, сама занимаясь детьми. Я бесконечно обязан ей за поддержку, и мой долг ей безграничен и невыполним, хотя я и стараюсь обеспечить ей безбедную жизнь в качестве хоть какой-то компенсации за наши с ней трудные молодые годы. Это – самый главный фактор успеха моих ранних защит.

Еще одна банальность, которую можно сформулировать как целеустремленность. Но я вкладываю в это совершенно определенный смысл. Надо четко представлять, каков ожидаемый итог планируемой научной работы. В каком виде результаты работы вольются в информационные научные потоки, – а именно в этом смысл научной деятельности. Если цель работы – что-то просто «поизучать», то с хорошей вероятностью это будет пустая трата времени и результаты работы будут «не пришей кобыле хвост». Приведу пример. На одном из научных симпозиумов много лет назад я прочитал доклад о целлюлазах – ферментах, превращающих целлюлозу в глюкозу. Целлюлоза – это длинные цепи молекул глюкозы, связанных друг с другом по типу «голова к хвосту». Эти цепи уложены в упорядоченные «пакеты», что в итоге приводит к образованию целлюлозных волокон. Поскольку структура целлюлозы упорядочена, целлюлоза состоит из кристаллов. Она настолько плотно упакована, что на нее действуют далеко не все концентрированные кислоты. Соляная кислота, например, не действует. Просто не проникает внутрь кристаллических «пакетов». А ферменты-целлюлазы целлюлозу разрушают. Так происходит круговорот целлюлозы в природе, иначе мы упавшими деревьями были бы завалены до неба. Эти ферменты я изучал.

Так вот, рассказал я в своем докладе о целлюлазах, о том, что мы их получаем в очищенном виде и исследуем характер их действия, чтобы понять, как они атакуют целлюлозу, и попытаться применить эти принципы на практике, чтобы разработать биотехнологию целлюлозы. После завершения доклада подходит ко мне слушатель и спрашивает:

– А пробовали ли вы определить степень спиральности целлюлаз как белков?

– Нет, – говорю, – не пробовали и не намереваемся, хотя знаем, как это можно делать. По дисперсии оптического вращения. Но желания нет.

– Почему же? – он спрашивает. – Ведь это, возможно, никто в мире не делал.

– Не возможно, а точно никто не делал, – говорю я. – Я за литературой по целлюлазам внимательно слежу и не пропустил бы.

– Ну так сделайте, – говорит он, – и будете первыми. Опубликуете статью.

– И что это нам даст? – спрашиваю. – Ровным счетом ничего. Ну, например, найдем мы, что степень спиральности такой-то целлюлазы, допустим, 23 %. Скажет это нам что-то о механизме действия целлюлаз? Нет. Поможет это нам в разработке технологического процесса гидролиза целлюлозы? Опять-таки нет. Видите, ни для фундаментальных вопросов, ни для прикладных эта информация ничего не даст. Вот если бы мы специально занимались спиральностью белков и ферментов, то эти данные, возможно, и были бы полезны для обобщений в данной области. А мы этим не занимаемся. Поэтому они для нас бесполезны.

– Вы не понимаете, – он говорит. – Ведь это же в мире никто не делал! В смысле не измерял степень спиральности целлюлаз. Неужели не интересно?

– Нет, – говорю ему. Так и разошлись, к его огорчению и непониманию. К чему это я? А к тому, что получаемые «научные данные» в огромном большинстве случаев не имеют отношения ни к фундаментальной, ни к прикладной областям науки. Так, болтаются посередине. Потому что изучать можно что угодно. Например, толочь воду в ступе. Только это по-научному назовут «Проблемы повышения дисперсности оксида двухатомного водорода механическим путем». Или влияние лунного света на рельсы. Только это назовут «Влияние рассеянного немонохроматического излучения в диапазоне длин волн 420–760 нм низкой интенсивности (доли люкса) на свойства высокоуглеродистой стали марки 76Т и 76Ф». Еще добавят: «с содержанием углерода 0.71—0.84 %». Но на признание научной общественности можно особенно не рассчитывать.

Вы будете смеяться, но недавно я натолкнулся на статью в ПЖТФ («Письма в журнал технической физики»), том 24 (1998), выпуск 23, с. 9 под названием «Дальнодействующее влияние слабого фотонного облучения (с длиной волны 0.95 mu м) на механические свойства металлов» (Д.И. Тетельбаум, А.А. Трофимов, А.Ю. Азов, Е.В. Курильчик и Е.Е. Доценко, Научно-исследовательский физико-технический институт Нижегородского государственного университета им. Н.И. Лобачевского).

Возвращаясь к исходной мысли, поделюсь, что я всегда – интуитивно или осознанно – выбирал те направления научной работы или проводимые эксперименты, которые четко направлены на решение либо фундаментальных, либо прикладных аспектов поставленных вопросов. Если фундаментальных, это позволяет в итоге сформулировать непознанные закономерности строения или поведения химических или биологических веществ. Это в моей области науки. Если прикладных, это позволяет в итоге предложить вещество, технологию или аппарат для практического применения. При этом надо, естественно, знать, применения где, в каком виде и кто это купит. Если ключевых слов типа «закономерности строения или поведения», или «практическое применение», или, наконец, «кто за это захочет заплатить деньги» (как основной критерий прикладной разработки) нет, то это, естественно, может быть интересным, но другим, не мне.

Чтобы не быть голословным, приведу области своих научных и прикладных интересов в примерно хронологическом порядке (потому что некоторые направления пересекались во времени):

• создание общей теории субстратной специфичности ферментативного катализа,

• ферментативный синтез антибиотиков,

• иммобилизованные ферменты,

• ферментативный гидролиз целлюлозы,

• ангиогенез раковой опухоли (изучение белка, ответственного за кровоснабжение раковой опухоли),

• биохимия алкоголизма (разработка лекарства, безболезненно нейтрализующего желание пить спиртное),

• создание нового противоракового препарата,

• экономически эффективное использование отходов бумажной промышленности (объем – 10 миллионов тонн только в Северной Америке; примерно столько же в Европе),

• разработка новых композиционных материалов на основе полимеров, целлюлозного волокна и минералов,

• создание нового лекарства для лечения фиброзов печени,

• создание нового лекарства для предотвращения поражения слизистой оболочки рта при химиотерапии,

• галектины – рецепторы организма, включающие или выключающие воспалительные патологии человека (рак, фиброзы, артриты),

• ДНК-генеалогия – разработка способов определения времен исторических событий по картине мутаций и скоростям мутаций в Y-хромосоме участников событий и их потомков.

<< 1 ... 3 4 5 6 7 8 9 10 11 ... 15 >>
На страницу:
7 из 15