Оценить:
 Рейтинг: 2.5

Неорганическая химия

Серия
Год написания книги
2009
<< 1 ... 4 5 6 7 8 9 >>
На страницу:
8 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля
O, H



4H

О и некоторых других веществ, например, С

Н

ОН3Н

О. В этих случаях растворение сопровождается образовани–ем химических связей частиц растворяемого вещества и растворителя. Этот процесс называется сольватаци–ей, в частном случае, когда растворителем является во–да, – гидратацией.

Как установлено, в зависимости от природы раство–ренного вещества сольваты (гидраты) могут образо–вываться в результате физических взаимодействий: ион-дипольного взаимодействия (например, при рас–творении веществ с ионной структурой (NaCI и др.); диполь-дипольного взаимодействия – при растворе–нии веществ с молекулярной структурой (органичес–кие вещества)).

Химические взаимодействия осуществляются за счет донорно-акцепторных связей. Здесь ионы раст–воренного вещества являются акцепторами электронов, а растворители (Н

О, NН

) – донорами электро–нов (например, образование аквакомплексов), а также в результате образования водородных связей (например, растворение спирта в воде).

Доказательствами химического взаимодействия раст–воренного вещества с растворителем являются теп–ловые эффекты и изменение окраски, сопровождаю–щие растворение.

Например, при растворении гидроксида калия в во–де выделяется теплота:

КОН + хН

О = КОН(Н

О)х; ?Н°

= –55 кДж/моль.

А при растворении хлорида натрия теплота погло–щается:

NaCI + хН

О = NaCI(H

О)х; ?Н°

= +3,8 кДж/моль.

Теплота, выделяемая или поглощаемая при раство–рении 1 моля вещества, называется теплотой раст–ворения Q

В соответствии с первым началом термодинамики

Q

= ?Н

,

где ?Н

– изменение энтальпии при растворе–нии данного количества вещества.

Растворение в воде безводного сульфата меди бело–го цвета приводит к появлению интенсивной голубой окраски. Образование сольватов, изменение окраски, тепловые эффекты, как и ряд других факторов, свиде–тельствуют об изменении химической природы компо–нентов раствора при его образовании.

Таким образом, в соответствии с современными представлениями, растворение – физико-химический процесс, в котором играют роль как физические, так и химические виды взаимодействия.

13. Термодинамика процесса растворения

Согласно второму началу термодинамики при р, Т = = const вещества самопроизвольно могут растворяться в каком-либо растворителе, если в результате этого процесса энергия Гиббса системы уменьшается, т. е.

?G = (?Н – T?S) < 0.

Величину ?Н называют энтальпийным фактором, а величину T?S – энтропийным фактором растворения.

При растворении жидких и твердых веществ энтропия системы обычно возрастает (?S > 0), так как растворяе–мые вещества из более упорядоченного состояния пе–реходят в менее упорядоченное. Вклад энтропийного фактора, способствующий увеличению растворимости, особенно заметен при повышенных температурах, по–тому что в этом случае множитель Т велик и абсолютное значение произведения T?S также велико, соответст–венно возрастает убыль энергии Гиббса.

При растворении газов в жидкости энтропия системы обычно уменьшается (?S < 0), так как растворяемое вещество из менее упорядоченного состояния (боль–шого объема) переходит в более упорядоченное (ма–лый объем). Снижение температуры благоприятствует растворению газов, потому что в этом случае множи–тель Т мал и абсолютное значение произведения T?S будет тем меньше, а убыль энергии Гиббса тем больше, чем ниже значение Т.

В процессе образования раствора энтальпия систе–мы также может как увеличиваться (NaCI), так и умень–шаться (КОН). Изменение энтальпии процесса раство–рения нужно рассматривать в соответствии с законом Гесса как алгебраическую сумму эндо– и экзотермиче–ских вкладов всех процессов, сопровождающих про–цесс растворения. Это эндотермические эффекты раз–рушения кристаллической решетки веществ, разрыва связи молекул, разрушения исходной структуры рас–творителя и экзотермические эффекты образова–ния различных продуктов взаимодействия, в том числе сольватов.

Для простоты изложения приращение энтальпии раст–ворения ?Н

можно представить как разность энер–гии Е

, затрачиваемой на разрушение кристаллической решетки растворяемого вещества, и энергии Е

, выде–ляющейся при сольватации частиц растворенного веще–ства молекулами растворителя. Иначе говоря, измене–ние энтальпии представляет собой алгебраическую сумму изменения энтальпии ?Н

в результате разруше–ния кристаллической решетки и изменения энтальпии ?Н

за счет сольватации частицами растворителя:



= ?Н

+ ?Н

,

где ?Н

– изменение энтальпии при растворении.

<< 1 ... 4 5 6 7 8 9 >>
На страницу:
8 из 9