Оценить:
 Рейтинг: 0

Нереальная реальность. Вся трилогия в одной книге

Год написания книги
2016
<< 1 ... 12 13 14 15 16 17 18 19 20 ... 25 >>
На страницу:
16 из 25
Настройки чтения
Размер шрифта
Высота строк
Поля

По-видимому, два непременных свойства именно жизни – сложность и изменчивость.

Действительно, живые организмы состоят из тех же атомов, что и неживая материя. Но вот способ, которым эти атомы соединены, совсем другой, что и приводит к уникальной комбинации молекул, свойственной живому. Живое существо – не просто зафиксированный в жёсткую структуру набор атомов. В нашем организме постоянно происходят разнообразные биохимические реакции. Мы очень сложные.

И мы, в отличие от камня, значительно быстрее меняемся со временем. Одна из ключевых особенностей живого организма – способность к самореализации заложенной в нём информации. Это проявляется в умении рассмотреть альтернативные сценарии будущего и выбрать из них наиболее благоприятный. А при необходимости, произвести корректировку. Эволюция живого определяется не только причиной, начальным состоянием, но и целью, будущим состоянием. Главная цель – выживание, сохранение жизни. Для того, чтобы выполнить эту цель, живой организм способен на удивительные по разнообразию ухищрения. Он умеет решать трудные задачи, может разработать комплексный план, стратегию собственного выживания. Разумеется, это способствуют общему росту сложности.

Наконец, живой организм обладает набором функций, который, во всяком случае на Земле, совершенно не свойственен неживому предмету.

Вот эти функции:

1.Метаболизм, то есть поглощение и усвоение энергии, вывод отходов, обмен веществ.

2.Наследственность, то есть воссоздание себе подобного организма и приобретение новых качеств в процессе воспроизводства.

3.Развитие и восстановление, то есть рост организма, способность к обучению и к ремонту повреждённых участков.

4.Адаптация, то есть реакция на внешние факторы, выполнение действий в соответствии с изменениями в окружающей обстановке.

Вышесказанное подводит нас к важному выводу. Несмотря на то, что человеческий взгляд на проблему феномена жизни субъективен, вероятно, есть вполне объективные особенности, разделяющие живое и неживое.

Имеющиеся факты могут свидетельствовать о том, что живая материя занимает особое положение во Вселенной. Возможно, это не случайно.

Несмотря на глобальное «равнодушие» Космоса, и кажущуюся «безразличность» Природы, создаётся впечатление, что ставить знак равенства между местом камня и местом человека в структуре реальности преждевременно.

Эрвин Шрёдингер[22 - Шрёдингер Эрвин Рудольф Йозеф Александр – австрийский физик-теоретик, один из создателей квантовой механики, уделявший большое внимание философским аспектам науки.] замечательно подметил, что деятельность живого организма нельзя свести исключительно к проявлению обычных законов физики.

Складывается впечатление, что наука не способна объяснить феномен жизни без включения в её определение какой-то «духовной» составляющей. Вероятно, следует посмотреть на проблему в ином, более крупном масштабе. Я ещё неоднократно буду возвращаться к этому вопросу в книге.

Глава 21.Панспермия

Подавляющее большинство биологов уверены, что жизнь зародилась на Земле. Однако, я не готов безоговорочно поддержать эту точку зрения.

Сама возможность спонтанного появления живого из неживого чудовищно маловероятна. А это предположение является краеугольным камнем теории эволюции. В книге я уделю достаточно внимания такому взгляду на вопрос о происхождении жизни. Это вполне оправданно, поскольку теория эволюции очень убедительна. Однако, первым делом я хотел бы познакомить читателя с альтернативной версией. Которую считаю ничуть не менее возможной, чем традиционную.

Это теория панспермии.

Мы знаем, что жизнь на Земле возникла просто стремительно по космическим часам. Поэтому возникает естественный вопрос – может быть, что-то сильно помогло ускорить этот процесс?

Суть теории панспермии состоит в том, что самый первый раз жизнь зародилась очень давно не на Земле, а где-то далеко в космосе. И только впоследствии, по прошествии определённого промежутка времени, она расселилась на подходящих для этого планетах.

Впервые подобное предположение было высказано ещё в 1865 году Бертаном Рихтером[23 - Рихтер Бертон – американский физик, автор работ в области элементарных частиц.] и окончательно сформулировано Сванте Аррениусом[24 - Аррениус Сванте Август – шведский физико-химик, автор теории электролитической диссоциации.].

К сожалению, гипотеза панспермии незаслуженно находится в тени теории эволюции. Между тем, объективная оценка фактов позволяет мне утверждать, что прямых и косвенных подтверждений её справедливости больше, чем у традиционного взгляда на происхождение жизни.

Исходя из наших знаний, самым подходящим космическим транспортом-переносчиком органики являются метеориты и кометы. Логично предположить, что они могли доставить на Землю органический материал давно исчезнувших живых существ из другой планетной системы дальнего космоса.

Причём, совсем не обязательно, чтобы на планету прибыли живые организмы. Вполне достаточно было засеять Землю даже отдельными фрагментами неземных нуклеиновых кислот, чтобы качественно активизировать эволюционные процессы. Такого рода живой материал мог представлять собой нечто вроде матрицы для синтеза молекул, ставших в дальнейшем частью генома земных существ. Подобная гипотеза не просто допустима, но даже более обоснована, чем традиционная теория эволюции.

Все компетентные специалисты согласны с утверждением, что случайное зарождение жизни – событие исключительно маловероятное.

Поэтому логично предположить, что жизнь имеет больше шансов возникнуть в течение четырнадцати, а не четырёх миллиардов лет. Кроме того, вероятность существенно возрастает, если это событие теоретически могло произойти не на одной уникальной Земле, а на одной из практически бесконечного множества разнообразных планет во всей Вселенной.

Тогда за миллионы тысячелетий органика могла широко распространиться по всему космосу. Если это так, то жизнь способна постоянно и разнообразно эволюционировать в его различных областях. Там, где для этого сформировались подходящие условия. В первую очередь, где есть необходимое количество доступной энергии и благоприятные условия окружающей среды.

Сегодня точно установлено, что в дальнем космосе, в частности, в межзвёздных облаках, содержится множество сложных органических соединений – метан, этанол, синильная кислота, формальдегид, фуллерены и другие. Наверняка они существовали задолго до образования Солнечной системы. Это означает, что земная органика – отнюдь не особенное космическое явление.

Известная нам жизнь является результатом различных химических реакций углерода. Это основной составляющий элемент органической материи.

Углерод чрезвычайно распространён в космическом пространстве. Он обнаружен в поверхностных слоях звёзд, в протопланетных дисках, кометах, метеоритах и частицах звёздной пыли. Углеродосодержащие молекулы и органические вещества найдены не только в Млечном Пути, но и в других галактиках. В принципе, они вполне могли аккумулироваться в планетных системах, в том числе в тех, которые пригодны для возникновения жизни. В дальнейшем после взрыва сверхновой органика выбрасывалась в межзвёздное пространство.

В упавших на Землю метеоритах, возраст которых составляет миллиарды лет, учёные неоднократно обнаруживали сложные группы сахаров, а также десятки видов аминокислот, в том числе тех, которые участвуют в образовании белков. В прилетевших к нам небесных телах находили жиры, углеводы и органические кислоты. То есть, метеориты содержат большую часть основных элементов, необходимых для зарождения жизни.

Более того, даже межзвёздная пыль почти на две трети состоит из органики, а также имеет в своём составе углеродные и азотные соединения.

Важно понимать, что органика в космосе на удивление разная. Дело в том, что она постоянно подвергается воздействию внешней среды. Нагревание, облучение, взаимодействие с разнообразными объектами могут оказать существенное влияние на органическое вещество. Поэтому оно может значительно различаться по своему составу и свойствам. Например, органика в межзвёздной среде и органика в кометах – совсем не одно и то же.

Я совершенно не удивлюсь, если в будущем выяснится, что жизнь во Вселенной удивительно многообразна и необычна. И, возможно, широко распространена, поскольку фундаментальных углеродных «кирпичиков» в космосе достаточно.

Исследования некоторых найденных на Земле метеоритов показали, что содержащиеся в них микроорганизмы настолько тесно встроены в минеральную матрицу небесного тела, что их земное происхождение крайне маловероятно. Любопытно, что возраст этих метеоритов превышает 4.5 млрд. лет. Соответственно, находящиеся в них микроорганизмы, образовались ещё раньше. То есть, они старше Земли.

В лабораторных экспериментах точно установлено, что бактерии способны перенести межзвёздный перелет в жёстких условиях космической среды.

Кроме того, подходящими кандидатами-переносчиками жизни, являются вирусы. Земная жизнь условно является информацией, закодированной в форме ДНК. Вирусы состоят из ДНК, надежно «спрятанных» в белковую оболочку. Типичный вирус содержит около 100 000 бит информации, что на порядки больше, чем теоретически может образоваться за всё время химической эволюции.

В Антарктиде найдены работоспособные бактерии, которые заморожены в законсервированном виде миллионы лет. Для них весьма подходящим «звездолётом» могла быть ледяная комета, которых известно очень много. Попади такого рода небесные странники в своё время в подходящее место на ранней Земле – и вот вам отлично обоснованный сценарий первоначального зарождения жизни.

Наконец, нельзя полностью исключить вариант того, что некто преднамеренно «засеял» подходящую планету жизнью. Очень убедительные аргументы в поддержку этой версии содержатся в работах Фрэнсиса Крика[25 - Крик Фрэнсис – британский учёный, автор центральной догмы молекулярной биологии.] и Лесли Оргела[26 - Оргел Лесли – британский биохимик, исследователь ранней жизни на Земле.].

В частности, учёные обратили внимание на тот факт, что критически важные для жизни на Земле белки-ферменты чрезмерно обогащены молибденом. А это чрезвычайно редкий химический элемент. В обычных условиях его почти нет нигде во всей Солнечной системе. Повышенное содержание молибдена в чём-либо так же «естественно», как повышенное содержание платины в каменном топоре.

Крик высказал гипотезу, что высокоразвитая цивилизация накануне глобальной катастрофы отправила в просторы космоса непилотируемые аппараты, содержащие споры микроорганизмов, чтобы сохранить жизнь во Вселенной. Впрочем, с тем же основанием можно предположить, что отправка таких космических зондов была продиктована вовсе не трагическими обстоятельствами. А, например, мотивом постепенной колонизации подходящих планет.

В этой главе я привёл достаточно аргументов в пользу теории панспермии. Думаю, она должна рассматриваться не менее серьёзно, чем классическая теория эволюции.

Но, глобальная проблема в другом.

Даже если предположить, что теория панспермии верна, то всё равно она не даёт ответа на главный вопрос: как и где жизнь появилась в самый первый раз?

Глава 22.Датирование

Сейчас я хочу сделать небольшое отступление, чтобы ответить на вопрос, который возникает практически у каждого, кто знакомится с теорией эволюции.

Откуда учёные знают, что рассматриваемое событие произошло несколько тысяч, миллионов, а то и миллиардов лет назад?

На самом деле это не банальный, а очень важный вопрос. Потому что он связан с базовым доказательством самой теории. Учёным необходимо знать точный возраст образца исследования. Для обоснованных выводов недостаточно опираться на здравый смысл и интуицию. Голословно нельзя опровергать даже такой архаичный взгляд на мир, согласно которому всё было сотворено несколько тысяч лет назад. Нужно доказать, что это не так. Поэтому исследователями были разработаны очень надёжные методы датирования.

Вкратце расскажу о некоторых из них.

Мы знаем, что любой материал, в том числе живой организм, состоит из атомов. Атомы нестабильны, они распадаются со временем. В связи с этим проявляется эффект, известный нам как радиоактивность. Факт хорошо известный. Именно он положен в основу одного точного метода датирования.
<< 1 ... 12 13 14 15 16 17 18 19 20 ... 25 >>
На страницу:
16 из 25