Оценить:
 Рейтинг: 0

Теорема века. Мир с точки зрения математики

Год написания книги
2020
<< 1 ... 9 10 11 12 13 14 15 16 17 >>
На страницу:
13 из 17
Настройки чтения
Размер шрифта
Высота строк
Поля
Здесь-то, казалось бы, мы имеем средство определить массу: положение центра тяжести зависит, очевидно, от значений, какие мы припишем массам; надо распределить эти значения таким образом, чтобы движение центра тяжести было прямолинейно и равномерно; если третий закон Ньютона верен, это всегда возможно и может быть выполнено вообще только одним способом.

Однако дело в том, что не существует системы, которая была бы изолирована от всякого внешнего воздействия; все части Вселенной подвержены более или менее сильному воздействию со стороны всех других частей. Закон движения центра тяжести строго верен только в применении ко всей Вселенной в целом.

Но в таком случае, чтобы извлечь из него значения масс, нужно было бы наблюдать движение центра тяжести Вселенной. Нелепость этого следствия очевидна; мы знаем только относительные движения; движение центра тяжести Вселенной навсегда останется для нас неизвестным.

Итак, у нас не остается ничего, и все наши усилия были напрасны; нет иного выхода, как остановиться на следующем определении, которое является только признанием нашего бессилия: массы суть коэффициенты, которые удобно ввести в вычисления.

Мы могли бы перестроить всю механику, приписывая всем массам другие значения. Эта новая механика не была бы в противоречии ни с опытом, ни с общими принципами динамики (принципом инерции, пропорциональностью сил массам и ускорениям, равенством действия и противодействия, прямолинейным и равномерным движением центра тяжести, законом площадей). Только уравнения этой новой механики были бы менее просты. Говоря точнее, менее просты были бы только первые члены, т. е. те, которые нам уже открыл опыт. Быть может, удалось бы изменять массы в пределах малых величин так, чтобы простота полных уравнений ничего бы не теряла и не приобретала.

Герц задался вопросом, строго ли верны принципы динамики. «Многим физикам, – говорит он, – покажется немыслимым, чтобы самый отдаленный опыт мог когда-нибудь что-нибудь изменить в незыблемых принципах механики; однако же то, что исходит из опыта, всегда может быть и поправлено опытом».

После того, что мы сейчас говорили, все эти опасения являются излишними. Принципы динамики выступали перед нами сначала как опытные истины; но мы вынуждены были пользоваться ими как определениями. Только по определению сила равна произведению массы на ускорение; вот принцип, который отныне поставлен вне пределов досягаемости любого будущего опыта. Точно так же и действие равно противодействию только по определению. Но тогда, скажут, эти недоступные проверке принципы абсолютно лишены всякого значения; опыт не может им противоречить; но они не могут и научить нас ничему полезному; зачем же тогда изучать динамику?

Такой слишком поспешный приговор был бы несправедлив. Правда, в природе нет системы, совершенно изолированной, совершенно изъятой от всякого внешнего воздействия; но есть системы почти изолированные.

Наблюдая подобную систему, можно изучать не только относительное движение ее различных частей – одних по сравнению с другими, – но и движение ее центра тяжести относительно других частей Вселенной. Тогда мы убеждаемся, что движение этого центра тяжести почти прямолинейно и равномерно сообразно с третьим законом Ньютона.

Это – опытная истина; но она не может быть поколеблена опытом. В самом деле, что мог бы открыть нам более точный опыт? Он открыл бы, что закон только приближенно верен; но это мы уже знаем.

Теперь выясняется, каким образом опыт, с одной стороны, мог служить основанием для принципов механики, а с другой – никогда не будет в состоянии стать с ними в противоречие.

Антропоморфная механика. Кое-кто скажет: Кирхгоф только поддался общей склонности математиков к номинализму; талант, присущий ему как физику, не предохранил его от этого. Он сделал попытку дать определение силы и взял для этого первое попавшееся предложение; но в определении силы мы и не нуждаемся: идея силы есть понятие первичное, которое ни к чему не сводится и через что-либо не определяется, мы все знаем, что это такое, – мы имеем его в прямой интуиции. Эта прямая интуиция проистекает из понятия усилия (de la notion d’effort), хорошо знакомого нам с детства.

Но если бы даже эта прямая интуиция и открывала нам истинную природу силы самой по себе, она была бы недостаточна для обоснования механики; мало того, она была бы совсем бесполезна. Не важно знать, что такое сила, а важно знать, как ее измерить.

Все, что не научает нас измерять силу, так же бесполезно механику, как было бы, например, бесполезно субъективное понятие теплого и холодного для физика, изучающего теплоту. Это субъективное понятие не может быть переведено на язык чисел; значит, оно бесполезно: ученый, у которого кожа была бы абсолютно дурным проводником тепла и который, следовательно, никогда не испытывал бы ощущений ни холода, ни тепла, мог бы не хуже других наблюдать термометр, и этого ему было бы достаточно, чтобы построить всю теорию тепла.

Так и непосредственное понятие усилия не может служить нам для измерения силы; ясно, например, что, поднимая тяжесть в пятьдесят килограммов, я утомился бы сильнее, чем человек, привыкший таскать тяжести. Более того: это понятие усилия не открывает нам истинной природы силы; оно сводится в конце концов к воспоминанию мускульных ощущений; но никто не стал бы утверждать, что Солнце испытывает мускульное ощущение, притягивая Землю.

Все, что можно найти в нем, есть символ, менее точный и менее удобный, чем стрелки, которыми пользуются геометры, но столь же далекий от действительности.

Антропоморфизм сыграл важную историческую роль в происхождении механики; быть может, он доставит иной раз символ, который покажется некоторым умам удобным; но он не может обосновать ничего, что имело бы истинно научный или истинно философский характер.

«Школа нити». Андрад в своих «Лекциях по физической механике» возродил антропоморфную механику. Школе механиков, к которой принадлежит Кирхгоф, он противополагает ту, которую он довольно своеобразно называет школой нити.

Эта школа стремится свести все к «рассмотрению некоторых материальных систем с ничтожно малой массой, находящихся в состоянии напряжения и способных передавать значительные силы отдаленным телам, – систем, идеальным типом которых является нить».

Нить, передающая какую-нибудь силу, под действием ее слегка удлиняется; направление нити указывает нам направление силы, а величина последней измеряется удлинением нити.

Поэтому можно предпринять, например, такой опыт. Тело А прикреплено к нити; к другому ее концу прилагают силу, величину которой изменяют до тех пор, пока нить не получит удлинения ?; замечают ускорение тела А; затем отвязывают А и прикрепляют тело В; снова прилагают ту же или другую силу и изменяют ее до тех пор, пока нить снова получит удлинение ?; замечают ускорение тела В. Затем опыт повторяют как с телом А, так и с телом В, но уже таким образом, чтобы нить получала удлинение ?. Четыре отмеченных ускорения должны быть пропорциональными. Таким образом получается опытная проверка сформулированного выше закона ускорения.

Далее подвергают тело совместному действию нескольких тождественных нитей, равно натянутых, и исследуют на опыте, как должны быть расположены все эти нити, чтобы тело оставалось в равновесии. Получается опытная проверка правила сложения сил.

Однако чего же мы достигли в конце концов? Мы определили силу, приложенную к нити, деформацией, испытываемой этою нитью, – это довольно основательно; мы допустили затем, что если тело привязано к нити, то сила, передаваемая ему этой нитью, равна действию, которое это тело оказывает на нить; в конце концов мы воспользовались принципом равенства действия противодействию, рассматривая его не как опытную истину, но как само определение силы.

Это определение совершенно так же условно, как и определение Кирхгофа, но оно гораздо менее общо. Не все силы могут быть передаваемы при помощи нитей (к тому же для возможности сравнивать их необходимо было бы, чтобы все они передавались совершенно одинаковыми нитями). Если бы даже допустить, что Земля привязана к Солнцу какой-нибудь невидимой нитью, то по меньшей мере надо согласиться с тем, что мы не имеем никакого средства измерить ее удлинение.

Следовательно, в девяти случаях из десяти наше определение было бы недостаточно; ему нельзя было бы придать никакого смысла и пришлось бы вернуться к определению Кирхгофа.

Но тогда к чему же весь этот окольный путь? Вы допускаете известное определение силы, которое имеет смысл только в некоторых частных случаях. В этих случаях вы убеждаетесь при помощи опыта, что оно приводит к закону ускорения. Опираясь на этот опыт, вы принимаете затем закон ускорения за определение силы во всех других случаях.

Не проще ли было бы смотреть на закон ускорения как на определение во всех случаях и рассматривать перечисленные опыты не как подтверждение этого закона, а как проверку принципа противодействия или как доказательство того, что деформации упругого тела зависят только от сил, действующих на это тело? Мы не говорим уже о том, что условия, в которых ваше определение могло бы быть принято, никогда не выполняются в совершенстве – что нить никогда не бывает лишена массы, что она никогда не бывает изолирована от действия других сил, кроме противодействия тел, привязанных к ее концам.

Тем не менее идеи Андрада очень интересны; хотя они не удовлетворяют нашей логической потребности, зато они позволяют лучше понять историческое происхождение основных механических понятий. Размышления, которые они вызывают у нас, показывают нам, как человеческий ум поднимался от наивного антропоморфизма к современным научным идеям.

В точке отправления мы видим опыт, имеющий весьма частное значение и вообще довольно грубый; в конечной точке имеем совершенно точный закон, достоверность коего мы принимаем за абсолютную. Этой достоверностью наделили его мы сами, – так сказать, по доброй воле, – рассматривая его как результат соглашения.

Значит, закон ускорения, правило сложения сил – только произвольные соглашения? Да, это соглашения, но не произвольные. Они были бы произвольными, если бы мы потеряли из виду те опыты, которые привели основателей науки к их принятию и которые, как бы несовершенны они ни были, достаточны для их оправдания. Хорошо, если время от времени наше внимание бывает обращено на опытное происхождение этих соглашений.

Глава VII. Движение относительное и движение абсолютное

Принцип относительного движения. Были попытки связать закон ускорения с некоторым более общим принципом. Движение всякой системы должно подчиняться одним и тем же законам независимо от того, относить ли его к неподвижным осям или к подвижным, перемещающимся прямолинейно и равномерно. Это – принцип относительного движения, который внушается нам двумя обстоятельствами: во-первых, его подтверждает самый обыденный опыт, и, во-вторых, противоположное допущение совершенно противоречило бы нашему разуму.

Итак, допустим его и рассмотрим тело, находящееся под действием силы. Относительное движение этого тела для наблюдателя, перемещающегося с постоянной скоростью, равной начальной скорости тела, должно быть таким же, каким было бы абсолютное движение этого тела, если бы оно выходило из состояния покоя. Из этого заключают, что ускорение тела не должно зависеть от его абсолютной скорости, и отсюда пытаются извлечь доказательство закона ускорения.

Долгое время следы этого доказательства сохранялись в экзаменационных программах на степень бакалавра философских наук. Но эта попытка, очевидно, безнадежна. Препятствие, мешавшее нам доказать закон ускорения, было обусловлено отсутствием определения силы, и оно нисколько не устраняется, так как приведенный принцип не дает требуемого определения.

Но принцип относительного движения от этого не делается менее интересным; он заслуживает изучения сам по себе. Постараемся прежде всего дать ему точную формулировку.

Выше мы сказали, что ускорения различных тел, входящих в состав изолированной системы, зависят только от их скоростей и положений (относительных, а не абсолютных), если только подвижные оси, к которым отнесено движение, перемещаются прямолинейно и равномерно. Или, если угодно, эти ускорения зависят только от разностей скоростей и разностей координат тел, а не от абсолютных значений этих скоростей и координат.

Если этот принцип верен для относительных ускорений (или, лучше сказать, для разностей ускорений), то, сочетая его с законом противодействия, можно вывести, что он верен также и для абсолютных ускорений.

Остается, таким образом, рассмотреть, как можно доказать, что разности ускорений зависят только от разностей скоростей и координат или, говоря математическим языком, что эти разности координат удовлетворяют дифференциальным уравнениям второго порядка.

Можно ли это доказательство вывести из опытов или же из априорных соображений?

Припоминая сказанное выше, читатель сам даст на это ответ. В самом деле, в такой формулировке принцип относительного движения очень похож на то, что выше я назвал обобщенным принципом инерции. Это не совсем то же самое, потому что здесь речь идет о разностях координат, а не о самих координатах. Следовательно, новый принцип учит нас кое-чему большему сравнительно с прежним. Однако те же рассуждения приложимы и к нему, и они привели бы к тем же заключениям; возвращаться к этому было бы бесполезно.

Аргумент Ньютона. Здесь мы сталкиваемся с вопросом, крайне важным и в какой-то степени внушающим беспокойство. Я сказал, что принцип относительного движения не только был для нас результатом опыта, но и что a priori никакая иная гипотеза не допускается нашим разумом.

Но тогда почему принцип верен только в случае прямолинейного и равномерного движения подвижных осей? Казалось бы, он должен внушаться нам с той же силой и в случае, когда это движение переменно или, по крайней мере, когда оно сводится к равномерному вращению. Однако в этих двух случаях принцип неверен.

Я не стану подробно останавливаться на том случае, когда движение осей прямолинейно, но не равномерно; парадокс устраняется сейчас же при исследовании. Я нахожусь в вагоне, и если поезд, натолкнувшись на какое-нибудь препятствие, внезапно останавливается, я буду отброшен на противоположную скамейку, хотя прямо на меня не действовала никакая сила. Здесь нет ничего загадочного: я не подвергся действию никакой внешней силы, зато поезд испытал внешний толчок. Нет ничего парадоксального в том, что относительное движение двух тел оказывается возмущенным, раз движение того или другого тела изменено внешней причиной.

Остановлюсь подробнее на случае относительных движений, относимых к равномерно вращающимся осям. Если бы небо было беспрестанно покрыто тучами, если бы мы не имели никакого средства наблюдать светила, мы все-таки могли бы заключить, что Земля вращается; мы узнали бы об этом по ее сжатию или – еще лучше – из опыта с маятником Фуко.

Однако имело ли бы смысл говорить в этом случае, что Земля вращается? Если нет абсолютного пространства, то как можно вращаться, не вращаясь по отношению к чему-либо, а с другой стороны, как могли бы мы принять заключение Ньютона и верить в абсолютное пространство?

Но недостаточно констатировать, что все возможные решения одинаково не удовлетворяют нас; надо для каждого из них проанализировать основания, по которым мы отвергаем его, чтобы сделать наш выбор сознательно. Да простятся мне поэтому последующие длинные рассуждения.

Вернемся к нашему воображаемому случаю: густые тучи скрывают звезды от людей, и те не могут наблюдать их и даже не знают об их существовании. Как эти люди узнают, что Земля вращается? Еще увереннее, чем наши предки, они будут считать Землю, которая носит их, неподвижной и непоколебимой; им придется слишком долго ждать появления Коперника. Но, наконец, этот Коперник все-таки явится. Почему же это должно случиться?

Механики воображаемого нами мира сначала не натолкнулись бы ни на какое безусловное противоречие. В теории относительного движения рассматривают, кроме реальных сил, две фиктивные силы, которые называются: одна – обыкновенной, а другая – сложной центробежной силой. Наши воображаемые ученые могли бы, следовательно, все объяснить, рассматривая эти две силы как реальные, и они не увидели бы здесь противоречия с обобщенным принципом инерции, так как эти силы зависели бы: одна, подобно действительно существующему притяжению, от относительных положений различных частей системы; другая, подобно реальному трению, от их относительных скоростей.

Тем не менее некоторые трудности не замедлили бы пробудить их внимание. Если бы им удалось осуществить изолированную систему, то движение центра тяжести этой системы по траектории, почти прямолинейной, не имело бы места. Для объяснения этого факта они могли бы сослаться на центробежные силы, которые они рассматривали бы как реальные и которые они, несомненно, приписали бы взаимным действиям тел. Но они увидели бы, что эти силы не уничтожаются на значительных расстояниях, т. е. по мере того, как изоляция становилась бы совершенной: напротив, центробежная сила бесконечно возрастает с расстоянием.

Это затруднение казалось бы им уже довольно значительным; однако оно не остановило бы их надолго. Они не замедлили бы вообразить себе какую-нибудь среду, крайне тонкую, вроде нашего эфира, в которой плавали бы все тела и которая оказывала бы на них отталкивающее действие.

<< 1 ... 9 10 11 12 13 14 15 16 17 >>
На страницу:
13 из 17

Другие аудиокниги автора Анри Пуанкаре