Оценить:
 Рейтинг: 0

Таблица Менделеева. Элементы уже близко

Год написания книги
2023
Теги
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
N.

И ещё одно применение лития, возможно не самое приятное, хотя тоже связано с энергетикой, – термоядерный боеприпас, или водородная бомба. «Взрывчатым веществом» водородной бомбы является гидрид лития (LiH), в котором с изотопом литий-6 связан тяжелый водород (дейтерий). Схема действия этого оружия такова: «запалом» водородной бомбы является атомная бомба; взрыв атомной бомбы высвобождает нейтроны, которые, поглощаясь ядром лития-6, вызывают его разрушение с образованием гелия и сверхтяжелого водорода (трития), который затем вступает во вторичные реакции изменения состава атомного ядра. Термоядерные боеприпасы не только в состоянии обеспечить большую, чем у обычных атомных бомб, общую мощность взрыва, но и отличаются значительно большим количеством радиоактивных осадков, так что, надеюсь, в этой области литий никогда не будет применяться на практике.

4. Бериллий

Бериллий – первый элемент Периодической системы, который не образовался во время Большого взрыва, а появился позже – после появления первых звезд. Именно после – бериллий образовался не в термоядерных топках звёзд, подобных нашему Солнцу.

Бериллий, как и многие другие элементы, образуется во время разрушения звёзд – тогда, когда энергия вспышки сверхновой разрывает ядра тяжелых атомов на более легкие. То, что бериллий образуется не во время активной работы звезд, а при их разрушении, объясняет сравнительно малую распространённость этого элемента и в космосе, и в земной коре.

Одной из форм существования бериллия в земной коре являются минералы берилл и изумруд, оба эти минерала известны еще с античности. По легенде, император Рима Нерон смотрел на гладиаторские поединки через большой берилл, который природа отшлифовала так, что его можно было использовать в качестве подзорной трубы. Зелёную окраску бериллу и изумруду придают следовые количества хрома. Анализ изотопного состава кислорода в содержащих бериллий драгоценных камнях позволяет определить источник камня – это возможно, так как соотношение изотопов кислород-16 и кислород-18 на разных участках земной коры различается, и современные методы анализа позволяют обнаружить это различие. Изотопный анализ драгоценных камней показал, что происхождение изумрудов Римской империи – Альпы, точнее их район, ныне расположенный на территории Австрии, хотя некоторые из камней прибыли в Рим из более дальних мест – оттуда, где сейчас расположен Пакистан. Гораздо более интересно то, что некоторые изумруды, принадлежавшие правителям Империи Великих Моголов, судя по изотопному анализу – южноамериканские, их залежи могли располагаться на территории современной Колумбии. Косвенно это является свидетельством того, что государство, существовавшее на территории современных Индии, Пакистана, Бангладеш и юго-восточного Афганистана, могло отправлять экспедиции в Южную Америку через Тихий океан, хотя подтверждающих это исторических источников нет. К основным минералам бериллия относятся алюмосиликаты берилл и бертрандит. Бывает, что бертрандит образует кристаллы огромного размера. Рекордный образец бертрандита был найден в американском штате Мэн – длина кристалла составляла 5 метров, а весил он 20 тонн.

Предположение о том, что берилл и изумруд содержат новый химический элемент, появилось в восемнадцатом веке. Драгоценные камни проанализировал Луи Никола Воклен и 15 февраля 1798 года объявил, что обнаружил новый элемент, хотя и не смог выделить его из оксида. Металлический бериллий был получен только в 1828 году в результате реакции хлорида бериллия (BeCl

) с калием. Сам Воклен предложил дать новому элементу название «глюциний», бериллием элемент назвал немецкий химик Клапрот.

Бериллий сыграл важную историческую роль в изучении строения атома – этот элемент помог обнаружить такую элементарную частицу, как нейтрон. Открытие произошло в 1932 году. Джеймс Чедвик бомбардировал образец бериллия ?-лучами (потоком ядер атомов гелия), которые испускались претерпевающими радиоактивный распад атомами радия. Чедвик обнаружил, что бериллиевая мишень испускает новый тип элементарных частиц, масса которых была практически одинаковой с массой протона, но не имевших электрического заряда. Комбинацию радия и бериллия до сих пор применяют для получения нейтронов в исследовательских целях, хотя эффективность этого способа невелика – миллион ?-частиц позволяют получить всего лишь 30 нейтронов.

Бериллий – серебристо-белый, блестящий металл. Он довольно мягок и отличается небольшой плотностью. Бериллий довольно инертен – он не взаимодействует с водой даже при очень высоких температурах. Сплавы меди и никеля с бериллием не только характеризуются большей электро- и теплопроводностью, чем чистые медь и никель, но также приобретают исключительно высокую эластичность. Именно благодаря эластичности такие сплавы применяются для изготовления пружин, сплав меди с бериллием также применяют для изготовления искробезопасных инструментов, которыми и только которыми можно работать в опасных производственных помещениях, например нефтехранилищах.

Низкая плотность бериллия и его высокая прочность позволяли предполагать, что этот металл станет основным материалом для аэрокосмической техники и заменит алюминий, но этому предположению так и не удалось воплотиться в жизнь. Благодаря высокой теплоотдаче при горении бериллия его порошок когда-то использовали как твёрдое ракетное топливо, но и в этой области он сейчас не используется. Причина тому, что бериллий не стал продуктом крупнотоннажного металлургического производства, стала его высокая токсичность – сейчас в мире ежегодно получают не более 500 тонн металлического бериллия.

Бериллиевая пыль вызывает хроническое воспаление лёгких и проблемы с дыханием. Кратковременный контакт с большим количеством бериллия или долгосрочное вдыхание малых количеств бериллиевой пыли вызывает бериллиоз лёгких. От отравления бериллием до проявления симптомов бериллиоза может пройти до пяти лет, и эта болезнь чаще всего приводит к преждевременной смерти или инвалидности. В основной группе риска находятся работники предприятий, на которых изготавливают металлический бериллий и бериллиевые сплавы. Впервые токсичность бериллия установили в 1940-х годах в связи с ухудшением состояния здоровья рабочих на производстве флуоресцентных ламп первого поколения, в люминофорный слой которых входил оксид бериллия. В 1950-е годы производство таких ламп было запрещено.

Бериллий помогает делать выводы и о геофизическом прошлом нашей планеты. В земной коре бериллий представлен только одним стабильным изотопом – бериллием-9, изотоп бериллий-10, попадающий в верхние слои атмосферы с космическими лучами, радиоактивен, период его полураспада составляет 1,5 миллиона лет. Этот радиоактивный изотоп бериллия был обнаружен в ледниках Гренландии и морских донных отложениях. Содержание бериллия-10, накопившегося там за последние 200 лет, возрастает и понижается параллельно увеличению и уменьшению солнечной активности. Содержание же этого изотопа в морских донных отложениях, сформировавшихся во время последнего ледникового периода, на 25% выше, чем в отложениях более поздних периодов. Эти наблюдения позволяют говорить о том, что магнитное поле Земли во времена ледникового периода было слабее, чем сейчас.

5. Бор

В наши антропоцентричные времена появилась тенденция на гуманизацию животных, растений и даже неодушевлённых предметов. Художники, проявляя различную степень мастерства, гуманизируют даже химические элементы, изображая их в виде людей, принадлежащих разным профессиям и обладающих различными чертами характера. Некоторые из элементов – те, которые больше на слуху, легко представить в виде людей. Так, золото можно изобразить блестящим финансистом-миллионером, не стремящимся к образованию прочных отношений.

Гелий мог бы выглядеть юношей с шевелюрой цвета Солнца, гербом благородного дома и высоким голосом. А что же с бором? Я бы приготовил для этого элемента два изображения. Большую часть времени бор ведет себя как рядовой менеджер среднего звена и средних лет, одетый в коричневые брюки и твидовый пиджак, но приходит время, он раскрывается с необычной стороны – предпочитает коктейль из мартини с водкой по рецепту «смешать, но не взбалтывать», сложные спецоперации и гонки на мотоциклах.

Впервые бор был получен в 1808 году французскими химиками Жозефом Гей-Люссаком и Луи Тенаром с помощью реакции оксида бора (борного ангидрида) B

O

с металлическим калием. Чуть позже, бор электролизом расплавленного B

O

Хэмфри Дэви удалось получить большее количество бора. В виде простого вещества бор представляет собой аморфное вещество коричневого цвета, которое вряд ли может привлечь кого-то.

По-настоящему бор раскрывается с неожиданной стороны, когда речь идёт о его производных. Возьмём нитрид бора —BN. Взятые в соотношении 1:1 элемент №5 и элемент №7 связаны такими прочными связями, что кристаллическая решетка нитрида бора такая же прочная, как кристаллическая решётка, состоящая из элемента №6 – алмаза. Трифторид бора BF

представляет собой типичную кислоту Льюиса. В отличие от справедливых для водных растворов теорий Аррениуса и Бренстеда-Лоури, в которых к кислотам относят вещества, образующие в воде ион гидроксония Н

О

, теория кислот и оснований Льюиса универсальна, и в ней кислотой считается вещество или частица, которая может выступать акцептором пары электронов. Самая простая кислота Льюиса – протон, частица, которую мы обозначаем как Н

. Соединение BF

может выступать в качестве кислоты Льюиса из-за того, что за счет собственных трех электронов бора и трех электронов от атомов фтора электронная оболочка бора содержит шесть электронов. Для формирования устойчивых электронных оболочек, в соответствии с правилом, впервые установленным самим Льюисом, необходимо восемь электронов. Бор в трифториде бора и подобных соединениях формирует устойчивую восьмиэлектронную оболочку, принимая в свободную электронную ячейку-орбиталь два электрона, заряжаясь при этом отрицательно.

Именно эти свойства бора позволяют применять гексагидрид дибора, он же диборан (В

Н

), в спецоперациях органического синтеза. Гидрида бора со строением ВН

нет, но об этом чуть позже. Диборан быстро и избирательно присоединяется к двойным связям углеводородов, а продукт этого присоединения легко разрушается щелочным раствором перекиси водорода, образуя при этом спирты. Реакция протекает очень легко, не образуя побочных продуктов, и самое главное её достоинство в том, что она позволяет получать первичные спирты, которые нельзя получать присоединением воды к двойной связи непредельного углеводорода – там, в соответствии с правилом Марковникова, можно получить только вторичные спирты.

Свое название бор получил благодаря минералу, из которого был выделен, – буре, Na

B

O

?10H

O, действуя сильной кислотой на буру, можно получить борную кислоту H

ВО

, которую раньше можно было купить в аптеке. Борная кислота применялась как мягкое асептическое средство, средство для обработки щелочных ожогов кожи и даже инсектицид, правда, сейчас борную кислоту стараются не использовать – она попала под подозрение как слабый канцероген. В борной кислоте с атомом бора связаны три гидроксильные группы —ОН, если одну группу ОН заместить на остаток ароматического углеводорода – арильную группу, получается арилборная кислота, способная реагировать с арилгалогенидами с образованием связи С–С в каталитической реакции, известной как реакция Сузуки. За эту реакцию, которая позволяет получать новые органические соединения с большой скоростью и избирательностью, образуя целевые продукты с большими выходами, её первооткрыватель – Акиро Сузуки – в 2010 году был награжден Нобелевской премией.

Свою роль бор сыграл и в теории химии, точнее в теории химической связи. Произошло это тогда, когда в 1940-е годы ученые начали задумываться о том, почему молекулы BH

не существует, а простейший бороводород – диборан, формула которого B

H

.

Элементы главных подгрупп, к которым относится бор, стремятся заполнить внешнюю оболочку до восьми электронов. В соответствии с правилом электронных октетов, устойчивой электронной оболочкой является оболочка, изоэлектронная инертным газам. Образуя химические связи (как ионные, так и ковалентные), атомы стремятся отдавать или принимать такое количество электронов, которое обеспечит наличие восьми электронов на их внешнем слое.

У бора на внешнем (валентном) уровне всего три электрона, поэтому в гипотетическом соединении BH

на внешнем электронном слое бора будет располагаться шесть электронов. Такая конфигурация не будет устойчивой, и, соответственно, соединения с шестиэлектронной оболочкой не будут устойчивы и просто не смогут существовать. Для увеличения стабильности своих соединений бор стремится принять на эту орбиталь пары электронов уже сформированных ковалентных связей. В конечном итоге образуются так называемые многоцентровые связи, в которых пара (или большее число электронов) может одновременно принадлежать более чем двум ядрам.

Состав соединений с многоцентровыми ковалентными связями часто отличается от состава, который можно было бы предсказать, основываясь на привлечении «привычной» теории валентных связей, где одинарная, двойная или тройная связи могут образовываться только между двумя атомами (то есть облако электронов может единовременно принадлежать только двум атомам – двум центрам, формирующим связь).

Изучение химической связи в боранах позволило определить, что теория валентных связей и классические валентные состояния не всегда могут предсказать и описать состав и строение химических веществ. Обнаружение для атомов бора многоцентровых многоэлектронных связей поставило перед химиками вопрос о необходимости нового определения валентности и других характеристик ковалентной связи, тем более что существующее в настоящее время определение валентности по IUPAC нельзя считать идеальным: «Валентность – максимальное количество одновалентных атомов, которое может соединиться с элементом или фрагментом, или с тем, чем может быть заменен этот атом». Очевидно, что давать определение феномена, используя слово, являющееся производным этого феномена, немного нелогично.

6. Углерод

Поскольку любой химик (как, впрочем, и любой человек) является углеродной формой жизни, об углероде он может разговаривать часами. Любой, кроме химиков-органиков. Они, конечно, тоже углеродные формы жизни, внешне неотличимые от людей, но поскольку они работают над получением новых соединений, содержащих линейные, разветвленные и замкнутые цепочки из атомов углерода и полагают, что все остальные элементы… периодической системы нужны лишь для исполнения грандиозного замысла – построения главной углеродной цепочки, которая их волей свяжет и скуёт все остальные углеродные цепи, – они могут говорить об углероде сутками.

Органическая химия, конечно, интересна, и действительно об органических соединениях можно говорить много и долго (говорю об этом ответственно, до того, как стать химиком-элементооргаником, я тоже был органиком), но и в виде простых веществ, веществ, состоящих только из атомов углерода, углерод весьма интересен. Углерод образует много разновидностей простых веществ – аллотропных модификаций. Кажется, что в последнее время каждая из таких модификаций получает своё «десятилетие славы» – в 1990-е годы своеобразным «хитом» стали полые «мячики» из атомов углерода – фуллерены, в начале 2000-х внимание химиков и специалистов по материаловедению приковали углеродные нанотрубки, и, наконец, последнее десятилетие, после вручения в 2010-м Нобелевской премии по физике Андрею Гейму и Константину Новосёлову, самой «хайповой» формой углерода стал графен – двумерный материал или слой углеродов толщиной в один атом.

<< 1 2 3 >>
На страницу:
2 из 3