Оценить:
 Рейтинг: 0

Мозг материален

Год написания книги
2019
Теги
<< 1 2 3 4 >>
На страницу:
3 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Это очень важный результат. Он показывает, что амигдала нужна не для того, чтобы испытывать страх, – а для того, чтобы его запускать, предварительно оценив угрозу. Без амигдалы вы неспособны испугаться маньяка, змеи, фильма ужасов… Но вот если у вас в крови слишком много углекислого газа, то есть вы задыхаетесь, то в мозге найдется масса других способов активировать панику.

Статус: все сложно

Допустим, вы сейчас отложите книжку и пойдете на свидание (отличная идея), и собеседник спросит вас, что вы сейчас читаете, а вы в ответ перескажете ему какую-нибудь историю из этого текста. Вопрос: какую? Я почему?то думаю, что либо про амигдалу, либо про гиппокамп. И не только потому, что они были недавно. А еще и потому, что я рассказываю про них значительно более четко и уверенно, чем про травмы коры. “Если вам повредить амигдалу, то вы не будете пугаться наркоманов в парке” – годится. “Если вам повредить такой?то участок коры, то вы…” Да черт его знает, что. Скорее всего, то?то и то?то, но у всех в разной степени и на разное время.

С одной стороны, даже небольшие повреждения коры могут вызывать довольно сильные перемены в поведении и восприятии реальности. Я уже рассказывала вам про речевые центры Брока и Вернике, при повреждении которых нарушается способность к членораздельной речи или к пониманию слов собеседника. Еще один яркий пример – это повреждения области распознавания лиц в веретенообразной извилине, которые приводят – как вы догадались? – к нарушению распознавания лиц, или прозопагнозии[53 - Kanwisher, N. & Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361 (1476), 2109–2128.].

Мы точно не знаем, была ли повреждена именно веретенообразная извилина у человека, который принял жену за шляпу, в одноименной книге Оливера Сакса (потому что этому пациенту не делали никакого сканирования мозга), но, скорее всего, да. Пациенты с таким диагнозом (подтвержденным результатами МРТ) действительно не узнают в лицо своих знакомых и даже близких родственников – хотя помнят об их существовании и могут привыкнуть узнавать их по каким?то другим чертам, например по голосу, прическе или одежде. Если показать им три фотографии одного и того же лица, из которых две одинаковые и обычные, а третья такая же, но сильно искажена в графическом редакторе – например, глаза сдвинуты к самой переносице или рот прижат близко к носу, – и попросить указать на фотографию, которая отличается, то процент правильных ответов будет на уровне случайного угадывания: люди с прозопагнозией невосприимчивы к пространственному расположению черт лица (хотя у некоторых из них результаты улучшаются, если им сказать, на что конкретно обратить внимание)[54 - Barton, J. J. S. et al. (2002). Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology, 58 (1), 71–78.].

Но даже с этими хрестоматийными примерами все не так однозначно. Зоны Брока и Вернике у некоторых людей могут быть расположены не в левом полушарии, а в правом. Прозопагнозия бывает врожденной, и в этом случае с веретенообразной извилиной у людей все в порядке, и она даже активируется, когда им показывают лица[55 - Avidan, G. et al. (2005). Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. Journal of Cognitive Neurosciences, 17 (7), 1150–1167.], но узнавать знакомых им это не помогает – там присутствуют более тонкие нарушения, предположительно связанные со взаимодействием между разными отделами мозга[56 - Rosenthal, G. et al. (2017). Altered topology of neural circuits in congenital prosopagnosia. eLIFE, 6, e25069.].

С другой стороны, бывает наоборот: очень сильные повреждения мозга могут обходиться у некоторых счастливчиков практически без видимых последствий. Больше всего таких примеров связано с гидроцефалией – чрезмерным накоплением спинномозговой жидкости в желудочках головного мозга. Если гидроцефалия возникла у младенца, то ее трудно не заметить, потому что она сопровождается увеличением объема черепа. Ее заподозрит педиатр при плановом осмотре, порекомендует проконсультироваться с неврологом, и если диагноз подтвердится, то ребенку назначат лечение – чаще всего хирургическую операцию, например шунтирование для обеспечения оттока жидкости. Но если гидроцефалия возникла позже, когда череп уже неспособен к быстрому росту, то увеличенные желудочки начинают сдавливать мозг. Опять же, в этом случае человек обычно испытывает тошноту, головную боль, сонливость, нарушения координации движений и другие неприятные симптомы, доходит до невролога, получает диагноз и лечение.

Однако изредка случается, что очень сильную гидроцефалию обнаруживают у взрослого человека совершенно случайно[57 - Nahm, M. et al. (2017). Discrepancy between cerebral structure and cognitive functioning. A review. The Journal of Nervous and Mental Disease, 205, 967–972.]. Скажем, в восьмидесятые годы был описан случай студента-математика с IQ=130, который попал в сферу внимания врачей только в 20 лет в связи с жалобами на замедленное половое созревание. Врач обратил внимание на то, что у юноши довольно крупная голова, и направил его на сканирование мозга. Выяснилось, что желудочки занимают большую часть черепа, а объем собственно мозга, по самым оптимистичным расчетам, составляет 56 % от нормального.

Другой документально подтвержденный пример: женщина, обратившаяся к врачам в 44 года с жалобами на головную боль и в результате выяснившая, что больше половины объема ее черепа заполняет спинномозговая жидкость. За исключением головной боли, ее ничего не беспокоило, ее IQ был 98, она работала администратором, а на досуге учила иностранные языки и знала их семь штук. Правда, окружность головы у нее была 62 сантиметра (я, конечно, тут же оторвалась от компьютера, чтобы измерить свою: получилось 54), но, в конце концов, большая голова – это красиво.

Предполагается, что в случае гидроцефалии на руку пациентам играет тот факт, что болезнь развивается постепенно. Мозг успевает перестроиться, оптимизировать свои функции, перераспределить их от более пострадавших отделов к менее пострадавшим. Если бы повреждение такого масштаба случилось одномоментно, то человек бы, вероятно, погиб. Но это не точно.

В 2016 году нейробиологи и врачи из четырех стран собрались вместе, чтобы описать случай пациентки C. G., менеджера в международном банке из Аргентины[58 - Garcia, A. M. et al. (2016). A lesion-proof brain? Multidimensional sensorimotor, cognitive, and socio-affective preservation despite extensive damage in a stroke patient. Frontiers in Aging Neuroscience, 8, 335.]. Когда ей было 43 года, она испытала острый приступ головной боли, ее затошнило, она потеряла сознание. Когда ее доставили в больницу, компьютерная томография показала массивное кровоизлияние в мозг. После этого C. G. долго и тяжело поправлялась, подвижность левой половины тела нарушилась, через полгода к тому же начались эпилептические припадки, от которых плохо помогали лекарства. Через полтора года после первого инсульта она пережила второй, на этот раз ишемический (связанный с нарушением кровоснабжения). Парадоксальным образом после него она поправлялась быстрее, чем после первого, жалобы были только на снижение чувствительности в правой руке и появление синестезии[59 - Синестезия – это склонность мозга к тому, чтобы смешивать информацию разных модальностей, скажем, воспринимать цифры и буквы – или людей, как в случае C. G., – имеющими свои определенные цвета. Это не жульничество: например, если показать синестету лист, заполненный цифрами 5 вперемешку с цифрами 2, то он видит их по?разному окрашенными и поэтому мгновенно сообщает, в какую именно фигуру складываются цифры на листе. Подробнее можно почитать в книге Вилейанура Рамачандрана “Мозг рассказывает”.], причем последняя вскоре исчезла. В общей сложности в результате двух инсультов у нее серьезно пострадало правое полушарие (все его зоны: и лобная, и височная, и теменная, и затылочная кора), сильвиева борозда и полосатое тело в левом полушарии, островковая кора и амигдала с обеих сторон и мозолистое тело в придачу.

При этом у C. G. все в порядке. Это подтверждают и ее мама, и друзья. И исследования – тоже. Она без проблем справлялась со стандартными неврологическими тестами на способность к контролю за своими действиями и словами. Например, когда экспериментатор хлопает по столу один раз, вам нужно хлопнуть дважды, и наоборот. Или вам нужно закончить предложение, используя грамматически подходящее, но непригодное по смыслу слово: “Москва – столица нашей…” (“родины” – неправильный ответ, подойдет что-нибудь вроде “ежевики”). У испытуемой не было проблем с рабочей памятью – например, с тем, чтобы воспроизвести в обратном порядке последовательность, в которой экспериментатор указывал на четыре кубика. C. G. различала вкусы растворенных в воде сахара, соли, лимонной кислоты и хинина не хуже, чем контрольная группа здоровых испытуемых. Она реагировала на эмоционально окрашенные видеоролики так же, как все. Понимала, какие эмоции выражают люди, говорящие с разными интонациями или сфотографированные с разными выражениями лиц. Единственная проблема, которую все?таки удалось выявить экспериментаторам в ходе серии тестов, заключалась в том, что у C. G. была снижена чувствительность к запахам. В попытках придраться к чему-нибудь еще экспериментаторы отмечают, что C. G. очень открыта и охотно обсуждает свои медицинские проблемы и свои чувства по этому поводу даже с теми людьми, которых встречает впервые (ну мало ли, я вот тоже все легко обсуждаю, а у меня даже инсульта пока не было). Ну и еще у нее по?прежнему снижена чувствительность правой руки, но это не мешает ей ни печатать на компьютере, ни завязывать шнурки. Честное слово, если бы кто?то придумал, как применить опыт выздоровления C. G. при реабилитации других пациентов с инсультом, то этому гению следовало бы немедленно присудить Нобелевскую премию, а еще дать “Оскара”, медаль “Мисс Вселенная” и избрать в президенты.

К сожалению, пока что ученые честно признаются, что они понятия не имеют, почему C. G. смогла настолько легко отделаться. Может быть, она феномен – в том смысле, что все ключевые нейронные контуры у нее в принципе с самого начала располагались в мозге не так, как у обычных людей, и поэтому не были затронуты инсультом, хотя должны были бы. Может быть, она феномен с точки зрения способностей к восстановлению функций – большинство тестов проводилось через год после инсульта. Может быть, она феномен с точки зрения резервов мозга – здесь авторы отмечают, что она никогда не пила и не курила, хорошо училась, занималась спортом, рисовала и играла в интеллектуальные игры. Может быть, второй инсульт каким?то образом сыграл роль противовеса первому. (Также может быть, что это все циничная фальсификация, но все?таки вряд ли: журнал приличный, руководитель исследования – серьезный высокоцитируемый ученый, было бы невыгодно так рисковать. Но цитирований у этой его статьи пока мало, потому что она относительно свежая, проверки тех же результатов другими авторами пока нет, так что вы перепроверьте после выхода книжки, может быть, к тому времени что?то прояснится.)

Как бы то ни было, травмы мозга не могут и не должны быть главным источником информации о его функциях. Во-первых, они, к счастью, относительно редко встречаются. Во-вторых, они разные у разных людей. В-третьих, состояние пациентов изменяется, по мере того как проходит время. Все это неизбежно приводит к тому, что исследователи работают с очень маленькими выборками, а то и вовсе с единичными случаями. Поэтому, если бы в распоряжении нейробиологии были только люди с поврежденным мозгом и не было бы никаких экспериментальных методов для перепроверки полученных гипотез, это была бы довольно маленькая, туманная и скучная наука. К счастью, это не так.

Глава 2

Нажми на кнопку – получишь результат

Кордова, Испания, шестидесятые годы, коррида. Само представление еще не началось: на арене пока нет никакого матадора в расшитых золотом шелковых одеждах. Вместо него по полю топчется мужичок средних лет, больше всего похожий на советского инженера: свитер с V-образным вырезом, белая рубашка, мешковатые брюки. У него в руках предметы, которые, вероятно, в ближайшем будущем понадобятся для представления: алое полотнище и еще какая?то штука. Старые черно-белые фотографии и видеозаписи не позволяют сразу разобрать, что это: то ли боевая шпага с причудливой рукоятью, то ли просто небольшая коробка, из которой торчит длинная антенна.

Но, похоже, произошла трагическая ошибка: именно в эту минуту на сцену внезапно выпускают быка. Он напряжен и готов к бою. Человек как будто бы не осознает опасности – как раз в этот момент он разворачивает красную тряпку (вы знали, что она называется мулетой?), и бык бросается на него. Понятно, что никаких шансов спастись у нетренированного человека нет. Бык мчится, ему осталось преодолеть всего несколько метров, чтобы поднять на рога незадачливую жертву. Кто же этот человек? Как он оказался на сцене? Это реквизитор? Почему он не пытается хотя бы убежать, а спокойно стоит и ждет приближения опасного животного? Он что?то знает? У него заготовлена какая?то хитрость?

По-видимому, да. Подпустив быка почти вплотную, человек совершает какое?то неуловимое движение пальцами – и разъяренный бык мгновенно останавливается с растерянным и оторопевшим видом.

Несостоявшаяся жертва – это нейробиолог Хосе Мануэль Родригес Дельгадо. Коробочка у него в руках – радиопередатчик. Что касается быка, то он был заранее прооперирован: ему в мозг вживили электроды, позволяющие мгновенно подавить агрессию.

“Как они работали? Куда именно их вживили?” – спрашивают на этом месте поколения студентов-нейробиологов. Долгие годы преподаватели ничего не могли им ответить. Дельгадо до такой степени несерьезно отнесся к этому опыту, проходному, сугубо демонстрационному, что, казалось, вообще не удосужился нигде толком описать свою методику, упоминал об этом случае в своих статьях и книгах разве что вскользь, уделяя основное внимание своим разнообразным экспериментам с кошками, обезьянами и людьми.

Контраст между ошеломительной известностью опытов Дельгадо с быками и полным отсутствием обстоятельного их описания удивлял многих нейробиологов, но повезло только чилийцу Тимоти Марцулло. В 2016 году ему удалось познакомиться на конференции в Испании с бывшими коллегами Дельгадо. После обстоятельных расспросов они припомнили, что Дельгадо упоминал свое участие в создании девятитомной энциклопедии, посвященной бою быков. Эта книга вышла в Испании в 1981 году небольшим тиражом, который полностью разошелся среди любителей корриды, и за многие годы никому из них и в голову не пришло, что вот эти подробности опытов с вживленными электродами, скромно притаившиеся в седьмом томе, совершенно уникальны и любой нейробиолог или научный журналист продал бы последнюю рубашку, чтобы о них прочитать.

Теперь возможность снять рубашку с любого нейробиолога, который вам интересен (на этом месте автор задумчиво вздыхает), уже безвозвратно упущена: утерянный текст Дельгадо благополучно найден, опубликован в открытом доступе, подробно пересказан на английском[60 - Marzullo, T. C. (2017). The missing manuscript of Dr. Jose Delgado’s radio controlled bulls. Journal of Undergraduate Neuroscience Education, 15 (2), R29 – R35.]. Дельгадо концентрируется на описании экспериментов с двумя быками – Каетано и Люсеро. Это были породистые боевые животные, так просто к ним было не приблизиться, усыпляющие препараты приходилось вкалывать с помощью пневматического ружья. Для операций была специально изготовлена подходящая для быков стереотаксическая установка – проволочный каркас, окружающий голову и позволяющий направить электроды в правильное место. Конкретно их вживляли в моторную кору, таламус и хвостатое ядро – скорее всего, именно последнее играло ключевую роль во влиянии на поведение. Внешнюю часть устройства закрепляли на костях черепа с помощью стоматологического цемента, а рога очень пригодились для того, чтобы примотать к ним приемники радиосигнала.

Никакого атласа бычьего мозга тогда не существовало, электроды вживляли до некоторой степени наугад, так что и результаты у Каетано и Люсеро оказались разными. Каетано получился чем?то вроде радиоуправляемой машинки: когда ему стимулировали левое хвостатое ядро, он поворачивался налево, а когда правое – то направо. Хвостатое ядро в первую очередь участвует в контроле за целенаправленными движениями, но оно также связано с эмоциями и взаимодействует с прилежащим ядром, “центром удовольствия”, так что Дельгадо полагал, что животное вполне могло испытывать радость во время стимуляции – по крайней мере, встревоженным оно не выглядело, крутилось на арене с виду вполне добровольно. А вот в случае более знаменитого быка, Люсеро, стимуляция хвостатого ядра[61 - Она проводилась в сочетании со стимуляцией таламуса, но он в основном участвует в обработке сенсорной информации и вряд ли играл ключевую роль в этом случае.] приводила к полной остановке деятельности, причем, как было показано с привлечением других животных, не только атаки, но и чего угодно, чем бы ни занимался бык: жевания, ходьбы и так далее. Пока хвостатое ядро получало импульсы от вживленных электродов, Люсеро стоял спокойно, опустив хвост, выпрямив шею. Тем временем Хосе Дельгадо отступал в безопасное место, за ограждение, а потом прекращал стимуляцию, и бык снова пытался его атаковать и таранил барьер. Система работала почти без сбоев, хотя Дельгадо и упоминает, что один раз бык все?таки до него добежал – но, к счастью, все же обошлось без серьезных травм. Иначе мир потерял бы многое.

Несбывшаяся антиутопия

Хосе Дельгадо вообще?то разрабатывал свою систему электродов с радиопередатчиками не для того, чтобы эффектно выступить на корриде. У него были иные прикладные задачи.

Если вы работаете с крысами, то вы можете создавать животных, у которых из головы постоянно торчит провод, подключенный к стимулятору. Они могут в таком виде жить месяцами, выполнять любые задания, осваивать лабиринты, нажимать на рычаги и так далее. Другое дело обезьяны. Как только прооперированное животное придет в себя, первым делом оно попытается выдернуть, сломать или перегрызть эту непонятную проволоку, торчащую у него из головы. Единственный выход – держать обезьяну в экспериментальной установке, которая ограничивает движения, но о наблюдении за естественным поведением тут речи не идет, и продолжать такой эксперимент долго тоже невозможно. Радиопередатчик сигнала, в общем, решает все эти проблемы. Он все равно расположен снаружи черепа, но его можно жестко закрепить, обезьяна не сможет повредить его и через некоторое время перестанет обращать на него внимание.

Это позволяет изучать социальное взаимодействие между обезьянами. Например, самец макаки-резуса начинает проявлять агрессию по отношению к сородичам[62 - Delgado, J. M. R. (1965). Evolution of physical control of the brain. James Arthur Lecture on the Evolution of the Human Brain. New York, American Museum of Natural History.],[63 - Delgado, J. M. R. (1966). Aggressive behavior evoked by radio stimulation in monkey colonies. American Zoologist, 6, 669–681.]? после стимуляции левого вентрального заднего бокового ядра таламуса (я не призываю вас сейчас вникать в это название, просто подчеркиваю, с какой высокой точностью исследователи размещали электроды). Но животное не превращается в зомби или робота: нападать оно станет на самцов-конкурентов, способных поставить под сомнение его авторитет, а любимую женщину трогать не станет. Можно, наоборот, вживить электрод в хвостатое ядро, и тогда его стимуляция (как и в случае с быками) будет приводить к остановке текущей деятельности и в том числе к прекращению агрессивных нападок на соседей. В одном из экспериментов Дельгадо предоставил обезьянам возможность самостоятельно управлять своим вожаком: нажимать рычаг, чтобы остановить его агрессию[64 - Delgado, J. M. R. (1963). Cerebral heterostimulation in a monkey colony. Science, 141 (3576), 161–163.]. Подчиненные особи активно пользовались этим инструментом.

С людьми Дельгадо не проводил экспериментов, направленных на изменение поведения, – большинство его вмешательств в мозг были связаны с попытками вылечить тяжелую эпилепсию. Но иногда поведение меняется незапланированно. Дельгадо упоминает[65 - Delgado, J. M. R. (1965). Evolution of physical control of the brain. James Arthur Lecture on the Evolution of the Human Brain. New York, American Museum of Natural History.], например, трех пациентов, у которых стимуляция височной доли привела к внезапному всплеску романтического интереса к экспериментаторам. Одна женщина пришла в состояние эмоционального возбуждения, заметного со стороны, взяла экспериментатора за руки и стала всячески проявлять к нему нежность и горячо благодарить за его усилия. После следующей стимуляции того же участка она завела с экспериментатором кокетливую беседу о том, что, когда этот прекрасный человек вылечит ее эпилепсию, она была бы не против выйти замуж. Второй пациентке посылали импульсы в мозг в течение часа через каждые 5–10 минут, и все это время ее чувства к экспериментатору неуклонно нарастали. Сначала это был просто дружеский диалог: “Из какой вы страны? Из Испании? Какая чудесная страна”. Потом градус вырос: “Испанцы очень привлекательны”. И наконец: “Я хотела бы выйти замуж за испанца”. Третий пациент, на этот раз юноша, сначала начал абстрактно говорить о своем желании жениться, но по мере продолжения стимуляции выразил сомнения в своей сексуальной ориентации и намекнул на желание пожениться с экспериментатором-мужчиной. Обратите внимание, какими трогательно высоконравственными были люди в начале шестидесятых: ни один из испытуемых не заговорил о сексе, зато все трое заговорили о свадьбе. Видимо, в те времена считалось хорошим тоном начинать логическую последовательность именно с нее.

В исследованиях Дельгадо стимуляция человеческого мозга приводила и к другим интересным эффектам: люди становились более дружелюбными и разговорчивыми, или испытывали галлюцинации, или просто наслаждались приятными ощущениями. “Теоретически возможно регулировать агрессию, или продуктивность, или сон за счет электродов, вживленных в мозг, – говорит Дельгадо. – Но эта технология требует специализированных знаний, отточенных навыков, детального и комплексного обследования каждого человека из?за анатомической и физиологической вариабельности. Осуществимость массового контроля за поведением с помощью стимуляции мозга крайне маловероятна”.

Ну и на том спасибо. Но вот попытки контроля за поведением отдельных людей некоторые современники Дельгадо предпринимали. Конечно, в большинстве случаев это было связано с поиском способов лечения тяжелых психических заболеваний[66 - Hariz, M. I. et al. (2010). Deep brain stimulation between 1947 and 1987: the untold story. Journal of Neurosurgery, 29 (2), E1.]. Стимуляция мозга рассматривалась как более гуманная и более современная (речь идет о шестидесятых-семидесятых годах прошлого века) альтернатива лоботомии, но, как и лоботомия, была далека от идеала. Вскоре от нее отказались при лечении большинства заболеваний – это стало возможным благодаря постепенному появлению новых, более эффективных способов фармакологического воздействия на психически больных людей.

Но, конечно, я не могу не рассказать вам и впечатляющую историю про дикие старинные нравы. Вот представьте: начало 1970?х, к вам поступает пациент, страдающий от эпилепсии, тяжелой депрессии с попытками суицида, ипохондрии, абсолютной апатии, приступов паранойи. Он не окончил школу, нигде подолгу не работал. Часто употреблял наркотики. Не умеет строить отношения с людьми: одновременно старается их избегать и плохо переносит недостаток внимания. Да, а еще он гей. На решении какой его проблемы вы сконцентрируетесь? Чарлз Моун и Роберт Хит, к которым попал этот пациент, решили, что надо бы для начала поменять ему сексуальную ориентацию[67 - Heath, R. G. (1972). Pleasure and brain activity in man. The Journal of Nervous and Mental Disease, 154 (1), 3–18.],[68 - Moan, C. E. & Heath, R. G. (1976). Septal stimulation for the initiation of heterosexual behavior in a homosexual male. In: Behavior Therapy in Psychiatric Practice, Ed. by Wolpe & Reyna, Pergamon Press Inc.] С этой целью они вживили ему электроды в септальную область (это еще одна зона мозга, тесно связанная с удовольствием, в дополнение к прилежащему ядру, которое я тут все время упоминаю). Через два месяца, когда все зажило, убедились, что электростимуляция септальной области действительно вызывает у человека приятные ощущения. Еще через месяц приступили к терапии.

Для начала пациенту, обозначенному в записях кодом B-19, показали гетеросексуальный порнофильм, не стимулируя мозг. Он был не заинтересован, а раздражен. Изменений в его электроэнцефалограмме по ходу фильма не было; доля альфа-волн, характерных для людей спокойных и расслабленных, выросла после того, как фильм, наконец, закончился.

B-19 был вознагражден за свои страдания: вскоре ему начали на три часа в день предоставлять возможность самостоятельно стимулировать свою септальную область. В один из таких сеансов он нажал на кнопку 1500 раз (в среднем каждые 7 секунд). Он чувствовал наслаждение, бодрость, душевное тепло, а еще сексуальное возбуждение, сопровождавшееся желанием мастурбировать. Когда у него забирали стимулятор, он всегда протестовал и требовал дать ему нажать на кнопку еще хотя бы несколько раз.

В целом у пациента значительно улучшился характер, отмечают Моун и Хит. Он охотно шел на сотрудничество с врачами и был вежлив и доброжелателен с персоналом. (Ну еще бы! Я тоже была бы доброжелательна к людям, от которых зависит мое ежедневное трехчасовое счастье.) Среди прочего он сообщил исследователям о том, что испытывает интерес к одной из сотрудниц, а также согласился снова посмотреть гетеросексуальное порно, и мастурбировал, и испытал оргазм. Еще через несколько дней восхитительной стимуляции мозга B-19 сообщил, что ему могло бы быть интересно попробовать секс с женщиной (впервые в жизни). Для этой цели исследователи пригласили проститутку, объяснили ей ситуацию и, предварительно подбодрив пациента двадцатисекундной стимуляцией септальной области, оставили будущих любовников наедине. У пациента B-19, заметим, из головы торчали провода: электроды ему вживили не только в септальную область, но и еще в несколько участков мозга, и они использовались для постоянного мониторинга электрической активности. Исследователи трогательно отмечают, что специально для такого случая они сделали провода подлиннее, чтобы они не мешали B-19 двигаться.

В течение первого часа наедине с девушкой B-19 убеждал ее, что он, во?первых, плохой человек (и лучше с ним не связываться), а во?вторых, вообще гей. Она утешала его и постепенно придвигалась ближе. К концу часа она сняла платье; B?19 тем временем сообщил, что настроение его улучшилось и он чувствует что?то вроде возбуждения. Девушка разделась и предложила B-19 поисследовать ее тело, показывала ему, как трогать ее грудь и половые органы. Постепенно B-19 втянулся: стал задавать вопросы и стараться гладить ее хорошо. Тогда она начала его возбуждать, и хотя B-19 оставался сдержанным, все?таки эрекция наступила, девушка села на него сверху и через некоторое время достигла оргазма (по крайней мере, и B-19, и исследователи в это поверили). Это вызвало у B-19 всплеск энтузиазма, он предложил поменять позу, чтобы перехватить инициативу, и через некоторое время кончил. После этого всячески демонстрировал свое восхищение девушкой и выражал надежду, что они встретятся снова.

Вскоре его выписали из больницы (и электроды, видимо, из головы вытащили, хотя в статьях об этом прямо не говорится). Приходя на консультации, B-19 говорил, что нашел подработки, записался на стажировку для последующего поиска постоянной работы и завел роман с замужней женщиной (исследователи скрупулезно описывают, какие именно формы сексуальной активности, со слов B-19, практиковала пара). Что касается мужчин, то с ними B-19, по его словам, за 11 месяцев отчетного периода спал буквально пару раз и только ради денег. На этом история заканчивается, а Моун и Хит гордо рапортуют, что лечить гомосексуальность надо не с помощью аверсивной терапии (например, ударами тока во время просмотра фотографий мужчин, как делали их коллеги в то время), а добром и любовью. И то верно: добрым словом и электрическими разрядами в септальную область можно добиться гораздо большего, чем просто добрым словом. Дальнейшая судьба B-19, впрочем, неизвестна. Зато известна судьба многих современных пациентов.

Люди-киборги

На самом деле лечение с помощью вживленных электродов давно стало рутинным. Вы сто раз про него слышали, просто могли не задумываться о его природе. Конечно, сейчас я говорю о кохлеарных имплантатах – устройствах, которые возвращают человеку способность слышать.

Если задуматься, любые рецепторные клетки решают одну и ту же задачу: переводят разнообразные сигналы из внешнего мира на универсальный, понятный мозгу язык электрических импульсов. На входе может быть что угодно: фотоны, если это клетка-колбочка; молекулы, если клетка обонятельного эпителия; механические колебания, если волосковая клетка внутреннего уха. На выходе всегда получаются нервные импульсы. По их частоте и по тому, от каких именно клеток они поступают, мозг может делать выводы о том, что происходит в мире. Потенциально это позволяет восстанавливать работу любых утраченных органов чувств (по большому счету мозгу вообще неважно, есть ли у него тело, – мозгу важно, чтобы он получал такие электрические импульсы, как будто бы у него есть тело), но задача эта технически непростая. Самых больших успехов человечество на сегодня добилось именно в воссоздании слуха.

Вот у нас есть внешний мир, а в нем звуки – колебания воздуха. Эти колебания передаются на барабанную перепонку, потом на слуховые косточки, а потом в главную часть слухового органа, улитку внутреннего уха. Там есть волосковые клетки – слуховые рецепторы, которые, как следует из названия, обладают волосками, особенными тонкими выростами, способными отклоняться в результате механических воздействий. Это, в свою очередь, приводит к тому, что волосковая клетка открывает мембранные каналы, запускает каскад внутриклеточных изменений и в конце концов выбрасывает во внешнюю среду глутамат – нейромедиатор, который уже воспринимается настоящими нервными клетками.

Существенно здесь то, что эта система конструктивно неспособна кодировать частоту звука непосредственно, по принципу “сколько пришло колебаний, столько и отправим нервных импульсов”. Мы, люди, умеем воспринимать довольно высокочастотные звуки, вплоть до 20 000 Гц. В то же время наши нервные клетки умеют генерировать нервные импульсы не чаще одного раза в миллисекунду, то есть на частоте 1000 Гц, а обычно и того меньше: клеткам нужно время, чтобы открывать-закрывать мембранные каналы, восстанавливать концентрацию ионов по обе стороны мембраны и вообще приходить в себя[69 - Подробности о том, как работают нейроны, будут в следующих главах, а еще в “Кратком курсе нейробиологии” в конце книги. Там много красивых длинных слов типа “Na

/K

аденозинтрифосфатаза”, и я не знаю, удобно ли вам вникать в детали прямо сейчас; если вы, скажем, едете в метро, то вряд ли. Для восприятия основного текста это полезно, но совершенно необязательно.]. Поэтому, для того чтобы закодировать частоту звука, в нашей слуховой системе используется просто положение волосковых клеток внутри улитки. Чем ближе они к началу улитки, тем сильнее они возбуждаются в ответ на звуки высокой частоты; чем дальше вглубь, тем сильнее возбуждаются на низкочастотные звуки. В основном это обусловлено механическими свойствами базилярной мембраны, на которой находятся клетки-рецепторы: она узкая и жесткая в начале, широкая и гибкая в конце, и из?за этого колебания разных частот достигают на ней максимальной амплитуды в разных местах[70 - LeMasurier, M. & Gillespie, P. G. (2005). Hair-cell mechanotransduction and cochlear amplification. Neuron, 48 (3), 403–415.].

Чувствительные окончания слухового нерва подсоединены к улитке по всей ее длине. При этом мозг ожидает, что если он получил самый сильный сигнал от нервного окончания в начале улитки, значит, это у нас звук высокой частоты; а если в конце улитки, то, соответственно, низкой частоты. Это удобное свойство (оно называется “тонотопическая организация”) позволяет подключиться к этим чувствительным окончаниям слухового нерва непосредственно – в том случае, если волосковые клетки у человека погибли.

Кохлеарный имплантат состоит из двух частей: съемной внешней и вживленной внутренней. Они удерживаются вместе с помощью магнита. Внешняя часть содержит микрофон, преобразователь звука и радиопередатчик. Внутренняя часть завершает процесс обработки сигнала, сортирует его по частотам и отправляет импульсы на стимулирующие электроды (в современных устройствах их от 16 до 22). Все электроды закреплены в гибком силиконовом стержне, введенном внутрь улитки. Высокие частоты передаются туда, где мозг ожидает обнаружить высокие частоты. Низкие – туда, где низкие.

Конечно, этот прибор не позволяет воссоздать все богатство звуковой гаммы. Носители кохлеарных имплантатов способны распознавать мелодии заметно хуже, чем обычные люди, и часто полностью перестают слушать музыку, так как она больше не приносит им эстетического наслаждения[71 - McDermott, H. J. (2004). Music perception with cochlear implants: a review. Trends in amplification, 8 (2), 49–82.]. Но принципиально, что кохлеарного имплантата достаточно для восприятия человеческой речи. Даже если ребенок был глухим от рождения, с имплантатом он способен научиться понимать собеседников и говорить самостоятельно. Исследователи не дают конкретных рекомендаций насчет оптимального возраста для вживления электродов, подчеркивая большие индивидуальные различия между испытуемыми[72 - Peterson, N. R. et al. (2010). Cochlear implants and spoken language processing abilities: review and assessment of the literature. Restorative Neurology and Neuroscience, 28 (2), 237–250.],[73 - Svirsky, M. A. et al. (2000). Language development in profoundly deaf children with cochlear implants. Psychological Science, 11 (2), 153–158.], но в целом работает принцип “лучше не затягивать”: тому, кто обрел слух в два года, будет проще научиться говорить, чем тому, кто получил его в четыре; им обоим будет намного проще, чем ребенку, прооперированному в восемь лет, но даже он будет обладать серьезными преимуществами по сравнению с тем человеком, чью операцию отложили до двенадцати.

Активно разрабатываются и имплантаты для борьбы со слепотой. Принцип в том, чтобы переводить изображение от видеокамеры, прикрепленной к очкам, или от вживленной прямо в глазное яблоко решетки с фотодиодами в электрические импульсы. Они, в свою очередь, передаются на нейроны сетчатки. Или в латеральное коленчатое тело таламуса (промежуточную станцию обработки зрительной информации). Или прямо в зрительную кору. Сегодня уже есть устройства, одобренные для клинического применения[74 - Finn, A. P. et al. (2018). Argus II retinal prosthesis system: a review of patent selection criteria, surgical considerations, and post-operative outcomes. Clinical Ophthalmology, 12, 1089–1097.], и еще больше новых подходов обсуждается, патентуется и испытывается на животных. Но пока что разработчики сталкиваются с гигантским количеством технических проблем[75 - Lewis, P. M. et al. (2015). Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Research, 1595, 51–73.]. Для сколько-нибудь качественного распознавания образов нужно вживить очень много электродов близко друг к другу. Часть из них будет выходить из строя, нервные клетки будут гибнуть, и, в конце концов, вся эта система от многочасовой работы просто будет сильно нагреваться, что тоже не очень?то полезно для живой ткани. Поэтому на сегодняшний день человек с таким имплантатом может в лучшем случае определять направление источника света и отмечать крупные движущиеся объекты. Ни об узнавании предметов, ни тем более о чтении речь пока не идет.

Значительно лучше обстоят дела с теми заболеваниями, для лечения которых не нужна ювелирная точность вживления электродов в конкретный нейрон, а достаточно простимулировать какую?то относительно крупную область мозга. В конце восьмидесятых французские ученые Алим-Луи Бенаби и Пьер Поллак сосредоточились на вживлении электродов для борьбы с болезнью Паркинсона – и достигли в этом таких впечатляющих успехов, что им даже иногда приписывают само изобретение глубокой стимуляции мозга[76 - Hariz, M. I. et al. (2010). Deep brain stimulation between 1947 and 1987: the untold story. Journal of Neurosurgery, 29 (2), E1.].

Открытие, как это нередко бывает, отчасти было случайным[77 - Benabid, A. L. et al. (1987). Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Proceedings of the Meeting of the American Society for Stereotactic and Functional Neurosurgery, Montreal.]. Исходно Бенаби занимался хирургическим лечением болезни Паркинсона. К тому моменту было известно, что удаление вентрального промежуточного ядра таламуса приводит к ослаблению симптомов, в частности к снижению тремора, и эта процедура часто применялась к пациентам, не отвечавшим на лекарственную терапию. Для разрушения участка мозга Бенаби использовал радиочастотную абляцию: в нервную ткань вводят электрод и пропускают через него переменный ток высокой частоты (около 500 кГц). В электрическом поле, окружающем проводник, все заряженные частицы – а их в мозге много! – начинают очень быстро двигаться туда-сюда, соответственно, происходит локальное повышение температуры, приводящее к разрушению выбранного участка. Такой метод менее травматичен для окружающего мозга, чем обычная операция[78 - Cosman, E. R. Sr. & Cosman, E. R. Jr. (2009). Radiofrequency Lesions. In: Lozano A. M., Gildenberg P. L., Tasker R. R. (eds.) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg.]. Но перед тем как запускать процесс разрушения, важно убедиться, что электрод попал туда, куда нужно. Для этого на него – или на несколько электродов, введенных в приблизительные окрестности искомой точки, – сначала подают ток более низкой частоты (например, 100 Гц) и наблюдают за реакциями и движениями пациента. И выяснилось, что такая стимуляция сама по себе способна ослабить тремор и улучшить координацию движений, например при письме (пациенты во время операции находятся в сознании, применяется только местная анестезия). В таком случае, может быть, и не обязательно ничего разрушать?
<< 1 2 3 4 >>
На страницу:
3 из 4