Оценить:
 Рейтинг: 4.67

Полный курс за 3 дня. Микробиология

Жанр
Год написания книги
2009
<< 1 ... 3 4 5 6 7 8 9 10 11 ... 14 >>
На страницу:
7 из 14
Настройки чтения
Размер шрифта
Высота строк
Поля

Липазы катализируют распад нейтральных жирных кислот, т. е. ответственны за отщепление этих кислот от глицерина. При распаде жирных кислот клетка запасает энергию. Конечным продуктом распада является ацетил-КоА.

Биосинтез липидов осуществляется за счет ацетилпереносящих белков. При этом ацетильный остаток переходит на глицерофосфат с образованием фосфатидных кислот, а они уже вступают в химические реакции с образованием сложных эфиров со спиртами. Эти превращения лежат в основе синтеза фосфолипидов.

Бактерии способны синтезировать как насыщенные, так и ненасыщенные жирные кислоты, но синтез последних более характерен для аэробов, так как требует кислорода.

Нуклеиновый обмен бактерий связан с генетическим обменом. Синтез нуклеиновых кислот имеет значение для процесса деления клетки. Синтез осуществляется с помощью ферментов: рестриктазы, ДНК-полимеразы, лигазы, ДНК-зависимые-РНК-полимеразы.

Рестриктазы вырезают участки ДНК, убирая нежелательные вставки, а лигазы обеспечивают сшивку фрагментов нуклеиновой кислоты. ДНК-полимеразы ответственны за репликацию дочерней ДНК по материнской. ДНК-зависимые-РНК-полимеразы отвечают за транскрипцию, осуществляют построение РНК на матрице ДНК.

Минеральный обмен важен для синтеза тела бактерий. Для него необходимы не только азот и углерод, но и зольные элементы – сера, фосфор, калий и кальций, а также микроэлементы – бор, молибден, цинк, марганец, кобальт, никель, йод, бром, медь и др. В состав цитоплазмы бактерий входит сера, которая участвует в синтетических реакциях в виде R-SH. Данная сера восстановленной формы обладает высокой реактивностью и легко поддается дегидрированию с последующим превращением в сложные соединения, которые при гидрировании восстанавливаются, благодаря чему регулируется окислительно-восстановительный потенциал в цитоплазме бактерии.

В нуклеиновых кислотах, многих ферментах, различных фосфолипидах и других органических соединениях содержится фосфор, который не вступает в непосредственное соединение с углеродом, но образует связи через атомы кислорода. В процессе окислительных реакций высвобождается энергия, аккумулированная в цитоплазме клеток. При этом большую роль в энергетическом обмене в клетке играют АТФ– и АДФ-кислоты. Кроме того, фосфор входит в состав нуклеопротеидов, фосфолипидов, простетических групп большинства двухкомпонентных ферментов, являющихся важнейшими соединениями цитоплазмы.

Для нормального развития микроорганизмов необходимы катионы и анионы многих металлов, в том числе магния, кальция, железа. Микроэлементы участвуют в синтезе ферментов и активизируют их.

Тема 4. Генетика микроорганизмов. Бактериофаги

1. Организация наследственного материала бактерий

ДНК является материальной основой наследственности, которая определяет генетические свойства всех организмов, за исключением РНК-содержащих вирусов, у которых вся генетическая информация записана в РНК.

Геном – фрагмент молекулы ДНК, контролирующий синтез одного белка или пептида. Генетическая информация относительно всех признаков, присущих клетке или вириону, записана в генах. Гены, несущие информацию о синтезируемых микроорганизмами ферментах или структурных белках, называются структурными генами, их транскрипции регулируются регуляторными генами.

Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК, она спирализована и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены.

Функциональными единицами генома бактерий, кроме хромосомных генов, являются:

1) IS-последовательности;

2) транспозоны;

3) плазмиды.

IS-последовательности – это короткие фрагменты ДНК. Они не несут структурных (кодирующих белок) генов, а содержат только гены, ответственные за транспозицию (способность перемещаться по хромосоме и встраиваться в различные ее участки).

Транспозоны – это более крупные молекулы ДНК. Помимо генов, ответственных за транспозицию, они содержат и структурный ген. Транспозоны способны перемещаться по хромосоме. Их положение сказывается на экспрессии генов. Транспозоны могут существовать и вне хромосомы (автономно), но неспособны к автономной репликации.

Плазмиды – дополнительный внехромосомный генетический материал. Представляет собой кольцевую, двунитевую молекулу ДНК, гены которой кодируют дополнительные свойства, придавая селективные преимущества клеткам. Плазмиды способны к автономной репликации, т. е. независимо от хромосомы или под слабым ее контролем. За счет автономной репликации плазмиды могут давать явление амплификации: одна и та же плазмида может находиться в нескольких копиях, тем самым усиливая проявление данного признака.

В зависимости от свойств признаков, которые кодируют плазмиды, различают:

1) R-плазмиды. Обеспечивают лекарственную устойчивость; могут содержать гены, ответственные за синтез ферментов, разрушающих лекарственные вещества, могут менять проницаемость мембран;

2) F-плазмиды. Кодируют пол бактерий. Мужские клетки (F+) содержат F-плазмиду, женские (F-) – не содержат. Мужские клетки выступают в роли донора генетического материала при конъюгации, а женские – реципиента. Они отличаются поверхностным электрическим зарядом и поэтому притягиваются. От донора переходит сама F-плазмида, если она находится в автономном состоянии в клетке.

F-плазмиды способны интегрировать в хромосому клетки и выходить из интегрированного состояния в автономное. При этом захватываются хромосомные гены, которые клетка может отдавать при конъюгации;

3) Col-плазмиды. Кодируют синтез бактериоцинов. Это бактерицидные вещества, действующие на близкородственные бактерии;

4) Tox-плазмиды. Кодируют выработку экзотоксинов;

5) плазмиды биодеградации. Кодируют ферменты, с помощью которых бактерии могут утилизировать ксенобиотики.

Потеря клеткой плазмиды не приводит к ее гибели. В одной и той же клетке могут находиться разные плазмиды.

2. Изменчивость бактерий

Различают два вида изменчивости – фенотипическую и генотипическую.

Фенотипическая изменчивость – модификации – не затрагивает генотип. Модификации затрагивают большинство особей в популяции. Они не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу.

Генотипическая изменчивость затрагивает генотип. В основе ее лежат мутации и рекомбинации.

Мутации – изменение генотипа, сохраняющееся в ряду поколений и сопровождающееся изменением фенотипа. Особенностью мутаций у бактерий является относительная легкость их выявления.

По локализации различают мутации:

1) генные (точечные);

2) хромосомные;

3) плазмидные.

По происхождению мутации могут быть:

1) спонтанными, образующимися самопроизвольно и без видимого внешнего воздействия;

2) индуцированными, появляющимися в результате обработки микробной популяции мутагенными агентами, которыми могут быть: радиация, температурные, химические и другие воздействия, т. е. экспериментальным путем.

По направлению мутационного изменения мутации подразделяются на:

1) прямые – возникают в геноме «дикого типа» у бактерий в естественных условиях обитания. Образовавшиеся особи являются мутантами.

2) обратные (реверсионные) – мутации, завершающиеся возвратом от мутантного типа к дикому. Особи, возникшие в результате таких мутаций, называются реверентами. Реверсия может быть истинной в результате восстановления первоначального состояния мутантного гена; супрессорной, если реверсия происходит за счет дополнительной мутации.

Диссоциация – одна из форм мутации, в результате которой в популяции микроорганизмов возникают особи, отличающиеся от исходных внешним видом и структурой колоний, так называемые S-формы (круглые, влажные, с блестящей гладкой поверхностью и ровными краями) и R-формы (колонии неправильной формы, непрозрачные, сухие, с неровными краями и шероховатой поверхностью). S– и R-колонии являются крайними формами диссоциации, между которыми могут встречаться переходные формы. Диссоциация – явление генетической природы, оно связано с хромосомными мутациями генов, контролирующих синтез липополисахаридов клеточной стенки бактерий. Эта форма мутации известна у многих видов, возникает в природных условиях, но чаще выявляется в стареющих культурах.

Рекомбинации – это обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом.

У бактерий существует несколько механизмов рекомбинации:

1) конъюгация;

2) слияние протопластов;

3) трансформация;

4) трансдукция.
<< 1 ... 3 4 5 6 7 8 9 10 11 ... 14 >>
На страницу:
7 из 14