Оценить:
 Рейтинг: 0

Время переменных. Математический анализ в безумном мире

Год написания книги
2019
Теги
<< 1 2 3 4 >>
На страницу:
3 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Бросьте «астрояблоко» с высоты, на которой находится Луна, и за первую секунду оно переместится чуть больше чем на один миллиметр. Это толщина прекрасной во всех отношениях кредитной карты.

В те времена движение Луны по орбите оставалось тайной. Считалось, что лучше всего его объясняет вихревая теория Рене Декарта, согласно которой все небесные объекты следуют своими маршрутами благодаря кружащимся, как в водовороте, потокам частиц, словно игрушки в ванне, устремляющиеся к сливу, когда из него вынимают пробку. Но наступило время перемен – annus mirabilis Ньютона, его «чудесный год», который «чудесным» же образом растянулся на 18 месяцев. Пережидая в Вултсорпе, у матери, эпидемию чумы, свирепствовавшей в Лондоне, Ньютон разработал идеи, которые легли в основу современной математики и физики. Он сформулировал законы движения, раскрыл оптические секреты призмы, не забывал обращать внимание на предметы быта и изобрел математический анализ.

А заодно, благодаря падению яблока, сверг с пьедестала вихри Декарта.

Как знал предшественник и брат Ньютона по духу Галилей, горизонтальное движение не влияет на вертикальное. Оставьте одно яблоко падать строго вертикально, а другое точно такое же яблоко киньте горизонтально в любую сторону, и они ударятся о землю в один и тот же момент. Разумеется, их горизонтальные траектории разойдутся, но вертикальное движение определяется одной и той же единовластной силой – притяжением.

Теперь поднимите свои яблоки на вершину очень высокой горы и бросьте их с силой супермена. Поздравляю! Вы попали в знаменитую иллюстрацию из шедевра Ньютона «Математические начала натуральной философии», демонстрирующую диковинные физические процессы падения с большой скоростью.

Здесь благодаря искривлению земной поверхности наше аккуратное разделение вертикального и горизонтального движения исчезает. То, что в один момент является горизонтальным, в другой становится вертикальным. Чем сильнее бросок, тем дольше продолжается падение.

Бросьте яблоко с силой, как это делает питчер Высшей бейсбольной лиги, и оно пролетит небольшое расстояние, прежде чем упасть на землю. Оно может добраться из точки А в точку В.

Бросьте яблоко по-настоящему сильно, как питчер «Ред Сокс» в сторону наглого игрока «Янкиз», и горизонтальное движение уведет фрукт от поверхности Земли, продлив падение. Возможно, он проделает весь путь до точки С.

Бросьте яблоко невообразимо сильно, как Генри Ровенгартнер[3 - Герой американского фильма «Новичок года» – бейсбольный игрок, который приобрел необычайную силу броска из-за травмы руки. – Прим. пер.] на стероидах, и оно полетит от Земли так быстро, что каждый момент падения будет просто возвращать яблоко на первоначальную высоту. Таким образом, яблоко сможет падать вечно.

Орбита – это всего лишь постоянное падение, и никакие картезианские[4 - «Картезианскими вихри» названы по латинизированной форме фамилии Декарта – Cartesius. – Прим. науч. ред.] вихри здесь не требуются.

Как все это работает с нашим отважным лунным яблоком? Ну, это задача для математического анализа, так что возьмем бесконечно малый момент – одну-единственную секунду путешествия. На таком коротком отрезке изогнутую линию орбиты можно считать прямой линией.

Здесь мы обозначим расстояние, которое пролетит яблоко, если будет подвергаться воздействию только силы притяжения.

А что теперь? Следующим шагом Ньютона было изящное геометрическое доказательство. Построим прямоугольный треугольник. Нам нужно узнать длину гипотенузы (самой длинной стороны). Поэтому впишем его в более крупный треугольник, сохраняющий те же пропорции.

Поскольку треугольники являются подобными, их стороны соотносятся одинаково:

Решив уравнение, получаем следующий ответ

Как вы помните, наше яблоко опускается с малой скоростью 1 мм/с – около 3 % скорости ленивца на поверхности земли. И тем не менее, чтобы удержать фрукт на орбите, мы должны запустить его со скоростью 1 км/с, что примерно в три раза больше скорости звука.

Казалось бы, невероятно, немыслимо! Луна падает как брошенное в сторону яблоко? Действительно, сэр Исаак? Можете ли вы подтвердить этот смешной мысленный эксперимент какими-либо – как это называется – доказательствами?

Ну, давайте прикинем время, за которое наше лунное яблоко сделает оборот по орбите вокруг Земли. На таком большом расстоянии ему придется пройти путь в 2,5 млн км по окружности. При движении со скоростью чуть больше 1 км/с сколько времени займет это путешествие?

Ха, вы только посмотрите на это! Наши расчеты совпали – с погрешностью менее 0,7 % – с периодом реальной лунной орбиты. Это удивительным образом подтверждает теорию Ньютона: Луна действительно падает, как огромное яблоко сорта «ред делишес» (и ее почти так же хочется съесть). Как заключил биограф Джеймс Глейк:

Яблоко само по себе ничего не значило. Оно представляло только половину пары – второй в ней была Луна… Яблоко и Луна сошлись при случайном стечении обстоятельств, создали обобщение, связали явления разного масштаба: близкое и далекое, обыкновенное и неизмеримое.

Теорию сэра Исаака трудно переоценить. Она определяет единственную универсальную силу, которая управляет земным и небесным королевствами, и порождает современный взгляд на реальность – механическая Вселенная, работающий как часы космос, подчиняющийся ясным, недвусмысленным и нерушимым законам, развиваясь от одного мгновения к другому.

Французский ученый Пьер-Симон Лаплас сказал об этом так: вообразите себе могучий ум, которому ведомы расположение всех предметов и мощность каждой силы. Подобный разум должен был бы знать все. «Ничего не было бы определенным, – сказал Лаплас, – а будущее, как и прошлое, стояли бы перед его глазами».

Весь мир – это дифференциальное уравнение, а все люди – всего лишь его переменные.

Не все приняли точку зрения Ньютона. Поэт Уильям Блейк не стал стесняться в выражениях и заявил: «Наука – это древо смерти». Писатель Алан Мур разъяснял: «Для Блейка границы мысли Ньютона были холодными каменными стенами внутреннего подземелья, куда заключено все человечество».

Сильно сказано!

Как бы то ни было, у Ньютона имелись полчища настоящих защитников. Перекрывая рекорды Александра Поупа («Был этот мир глубокой тьмой окутан. / Да будет свет! И вот явился Ньютон»[5 - Маршак С. Собр. соч. в 8 т. Т. 4. – М.: Художественная литература, 1969. – С. 94.]) и Уильяма Вордсворта («Тихое лицо / Как циферблат ума, что в одиночку / Плывет сквозь мысли странные моря»[6 - Шапиро А. Загадки старых мастеров / Пер. А. Шапиро.]), одним из самых яростных адвокатов Ньютона был философ и фанат науки Вольтер, который называл ученого «творческим духом», «нашим Христофором Колумбом» и (возможно, несколько перегибая палку) «божеством, которому я приношу жертвы». Именно Вольтеру мы обязаны одним из самых поэтических описаний математического анализа в истории: «искусство вычислять и измерять именно то, существование чего не может быть постигнуто», а также популярностью истории о яблоке, которое он поместил в центр интеллектуальных исканий ученого.

Если учесть, какой ореол мифов окутывает ее, насколько мы можем доверять сказке о яблоке?

«Эта история, разумеется, правда, – говорит Кейт Мур, глава архивов Королевского общества, – но, следует признать, ее можно было бы рассказать получше». Ньютон и сам подогревал интерес к этому случаю вместо того, чтобы честно рассказать о том, какими маленькими шажками и рывками наука постепенно движется к прогрессу. Не стоит забывать, что 15 лет он провел, совершенствуя свои теории, опираясь на работы Галилея, Евклида, Декарта, Валлиса, Гука, Гюйгенса и множества других ученых. Теории появляются на свет не просто так, у них есть корни. Они растут. В тот момент в нашем саду знаний еще не произросло полноценное понимание гравитации. Солнце только согрело своими лучами его первые ростки.

III

Радости полета бутерброда

Перебравшись в Англию и впервые переступив порог частной школы, насчитывающей 462 года истории, где я должен был стать преподавателем, я никак не мог поверить в свою удачу. Каждое утро учителя собирались в комнате отдыха и пили чай с бутербродами. Понятия «комната отдыха преподавателей» и «перерыв» уже были мне знакомы по прежнему месту работы. Но каждое утро бывать на пиру, словно в ожившей иллюстрации из жизни Хогвартса? «Я никогда к этому не привыкну», – говорил я своим новым коллегам.

Но я привык.

Ученые называют это ослаблением реакции на раздражитель. Это означает, что у меня было зрение, как у динозавра: хорошо натренированный замечать то, что движется, я не замечал всего, что неподвижно, даже если оно было намазано маслом. Возможно, это явление имеет объяснение с точки зрения эволюционной психологии, а может быть, я неблагодарная скотина, но в любом случае привыкание поддается систематизации с точки зрения математики. Мы растем, привыкая к функции, каких бы высот она ни достигала. С течением времени для того, чтобы привлечь наше внимание, требуется производная – ненулевая величина изменений. Только более новая новизна может захватить нас.

Однажды, налив чашку горячего чая и пережевывая кусок зернового хлеба (тьфу ты, а я думал, что взял белый!), я присел на диван рядом со своим другом Джеймсом, учителем английского.

– Как дела? – поприветствовал я его.

Джеймс воспринял этот дежурный вопрос так, как он принимал все: с полнейшей серьезностью.

– На этой неделе я счастлив, – ответил он. – С некоторыми вещами еще есть проблемы, но все становится лучше.

Очевидно, в первую очередь я являюсь учителем математики, а уже во вторую – человеческим существом, потому что на откровение своего друга я ответил следующим образом:

– То есть функция твоего счастья принимает средние значения, но первая производная является положительной.

Джеймс мог вырвать бутерброд из моей руки, выплеснуть свой чай мне в лицо и завопить:

– Наша дружба кончена!

Вместо этого он улыбнулся, наклонился и – клянусь вам, все так и было! – сказал:

– Звучит увлекательно. Объясни мне, что это значит.

– Ну, – начал я читать лекцию, – изобрази график изменения уровня своего счастья со временем. Линия проходит на средней высоте, но в данный момент поднимается – это и есть положительная производная.

– Понятно, – ответил он. – Значит, отрицательная производная означает, что дела идут хуже?

– Ну, – я увильнул от прямого ответа, – в каком-то роде.

Я демонстрировал педантичность, за которую математиков так любят. (Или правильно сказать «критикуют»?)

– Отрицательная производная означает, что значение уменьшается. Для некоторых функций – например, личного долга или физической боли – хотелось бы иметь отрицательную производную. Но в случае со счастьем – да, это не очень хорошо.

Это был довольно необычный первый урок по дифференциальному исчислению. Большинство студентов постигают эти идеи не с помощью зыбкой психологии функции «счастья», а через ясную и лаконичную физическую картину «положения». Например, обозначим положение велосипедиста на велодорожке как p. В начальной точке p = 0; через 800 м p = 0,8 км.

Что выражает здесь производная? То, как быстро p изменяется в определенный момент времени. Мы называем ее p? (произносится «p штрих») или (более наглядно) «скорость».
<< 1 2 3 4 >>
На страницу:
3 из 4