Оценить:
 Рейтинг: 0

Краткая история почти всего на свете: экскурсия в окружающий мир

Год написания книги
2003
Теги
<< 1 ... 5 6 7 8 9 10 11 >>
На страницу:
9 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля
* * *

Отчасти это случилось потому, что сам Авогадро не отличался общительностью – работал в одиночку, переписывался с учеными-коллегами очень мало, опубликовал мало работ и не бывал в собраниях, – но также причина и в том, что химиков, чтобы их посещать, просто не было, а химических журналов для публикации статей было мало. Это чрезвычайно странный факт. Промышленная революция разворачивалась в значительной мере благодаря прогрессу химии, но при этом на протяжении десятилетий химия едва существовала как сложившаяся наука.

Лондонское химическое общество было основано лишь в 1841 году, а его журнал стал регулярно выходить только в 1848 году. К тому времени большинству научных обществ в Англии – Геологическому, Географическому, Зоологическому, Садоводческому и Линнеевскому (для натуралистов и ботаников) насчитывалось по крайней мере по двадцать лет, а в ряде случаев и больше. Конкурирующий Институт химии появился лишь в 1877 году, через год после основания Американского химического общества. Из-за того, что химия так медленно организовывалась, известие о важном открытии Авогадро 1811 года стало общеизвестным лишь после первого Международного химического конгресса, состоявшегося в Карлсруэ в 1860 году.

Из-за того, что химики так долго работали обособленно друг от друга, медленно вырабатывались общепринятые обозначения. До второй половины столетия формула Н

О

у одного химика могла означать воду, а у другого – перекись водорода. Формула С

Н

могла означать как этилен, так и болотный газ – метан. Вряд ли можно было найти молекулу, которая бы везде обозначалась единообразно.

Химики также пользовались поразительным количеством символов и сокращений, часто придуманных ими самими. Швед Й. Я.

Берцелиус внес в эти дела необходимую меру порядка, установив, что сокращенные названия элементов должны основываться на их греческих или латинских названиях, вот почему аббревиатура для железа – Fe (от латинского ferrum), а для серебра – Ag (от латинского argentum). Тот факт, что многие другие аббревиатуры соответствуют их английским названиям, отражает обилие латинизмов в английском языке, а не его возвеличивание. Для обозначения количества атомов в молекуле Берцелиус применял надстрочную индексацию, например Н2О. Позднее без особых причин стали употребляться подстрочные цифровые индексы: Н

О[107 - Верхние индексы теперь служат для обозначения степени ионизации атома или молекулы. Например, O

– означает дважды ионизированный, то есть лишенный двух электронов атом кислорода. Также применяются верхние индексы слева от символа элемента, они обозначают атомный вес изотопа, например,

С – это радио активный изотоп углерода с атомным весом 14, применяющийся в археологии для датировки находок.].

Несмотря на эпизодические попытки навести порядок во второй половине XIX века, в химии царила известная неразбериха, вот почему всем пришлось по душе появление на научном горизонте несколько странного и немного безумного на вид профессора Петербургского университета Дмитрия Ивановича Менделеева.

Менделеев родился в 1834 году в Тобольске, в Западной Сибири, в образованной, достаточно обеспеченной и очень многочисленной семье – настолько многочисленной, что история потеряла точный счет ее членов: в одних источниках говорится, что было четырнадцать детей, в других называется семнадцать[108 - В семье Менделеевых было 17 детей, но четверо из них умерли в младенчестве.]. Во всяком случае, все сходятся на том, что Дмитрий был младшим. Но счастье не всегда сопутствовало Менделеевым. Когда Дмитрий был еще маленьким, отец, директор местной школы, ослеп и матери пришлось искать работу. Эта, несомненно, выдающаяся женщина в конечном счете стала управлять преуспевающим стекольным заводом. Все шло хорошо до 1848 года, когда завод сгорел и семья впала в нужду. Преисполненная решимости дать младшенькому образование, неукротимая госпожа Менделеева с юным Дмитрием отправилась на попутных за три тысячи километров в Петербург и устроила сына в Педагогический институт. Измученная трудами, она вскоре умерла.

Менделеев добросовестно закончил учебу и со временем получил должность в университете. Там он проявил себя знающим, но не таким уж выдающимся химиком и больше был известен своими взлохмаченными волосами и бородой, которые подстригал раз в год, нежели своими успехами в лаборатории.

Однако в 1869 году, в возрасте тридцати пяти лет, он начал ради интереса пробовать привести элементы в систему. В то время элементы обычно группировали двумя путями – либо по атомному весу (опираясь на закон Авогадро), либо по общим свойствам (например, являются ли они металлами или газами). Прорыв, совершенный Менделеевым, заключался в том, что он увидел возможность объединить и то и другое в одной таблице.

Как часто бывает в науке, этот принцип был фактически предвосхищен тремя годами раньше в Англии химиком-любителем, которого звали Джон Ньюландс. Он высказал мысль, что, когда элементы располагают по весу, у них вроде бы гармонично повторяются определенные свойства – на каждом восьмом отсчете шкалы. Несколько неблагоразумно, ибо для такой идеи время еще не пришло. Ньюландс назвал это явление законом октав и связал его с октавами фортепьянной клавиатуры. Возможно, в порядке, предложенном Ньюландсом, был определенный смысл, но сама идея связи с музыкой воспринималась как в корне нелепая, и ее стали широко высмеивать. Бывало, на собраниях некоторые участники, дурачась, интересовались, не сыграют ли его элементы какой-нибудь мотивчик. Обескураженный Ньюландс бросил настаивать на своей идее и скоро совсем исчез из виду.

Менделеев подошел несколько иначе, расположив элементы периодами по семь[109 - Много позднее, в 1900 году, Менделеев и У. Рамзай пришли к выводу о необходимости увеличить длину периода до восьми, чтобы включить группу благородных газов.], но исходя из той же предпосылки. И вдруг идея оказалась блестящей и на удивление перспективной. Поскольку свойства повторялись периодически, открытие стало известно как Периодическая таблица.

Говорят, что Менделеева натолкнул на мысль карточный пасьянс, когда карты располагаются горизонтально по масти и вертикально по старшинству. Используя близкий подход, он расположил элементы по горизонтальным рядам, которые назвал периодами, и вертикальным столбцам, получившим название групп. Тем самым сразу выявлялись одни связи при чтении сверху вниз и другие – при чтении от одного края к другому. Вертикальные столбцы объединяли вещества со сходными свойствами. Так, медь располагается над серебром, а серебро над золотом по причине их химического родства как металлов, а гелий, неон и аргон находятся в одном столбце, где расположены газы. (На деле расположение элементов определяется свойством, называемым электронными валентностями, и если вы хотите в них разобраться, то вам придется поступить на вечерние курсы.) В горизонтальных рядах элементы своим чередом располагаются в возрастающем порядке по количеству протонов в ядрах, которое называется атомным номером[110 - На самом деле Периодическая таблица выглядит намного сложнее. Дело в том, что длина периодов не является постоянной. После двух периодов по восемь элементов следуют два длиной по 18. Десять добавочных элементов вставлены в них между второй и третьей позициями. Следующие два периода еще больше – по 32 элемента в каждом (самые последние из них до сих пор еще не получены). И это еще не все – самый первый период состоит всего из двух элементов: водорода и гелия. Все эти особенности успешно объяснены сегодня квантовой механикой. Но в XIX веке уловить закономерность при столь непостоянных периодах было весьма непросто. По мнению историка науки ван Спронсена, открытие периодического закона было возможно только в 1860-х годах, когда еще не выделили большинство редкоземельных элементов, из-за которых так раздуваются последние периоды таблицы.].

О строении атомов и важности протонов речь пойдет в следующей главе; а сейчас все, что нужно, так это понять принцип построения: у водорода всего один протон, так что его атомный номер – 1 и он первым стоит в таблице; у урана 92 протона, и его атомный номер – 92. В этом смысле, как отметил Филип Болл[111 - Филип Болл (Philip Ball, р. 1962) – британский популяризатор науки, лауреат премии «Авентис» за лучшую научно-популярную книгу 2004 года – «Критическая масса» (русский перевод: М.: Гелеос, 2008).], химия – это, по существу, всего лишь дело подсчета. (Между прочим, не следует путать атомный номер с атомным весом, который означает число протонов плюс число нейтронов в данном элементе.)

Но и после открытия периодического закона многое еще предстояло узнать и понять. Водород – самый широко распространенный элемент во Вселенной, и тем не менее никто не догадывался об этом еще тридцать лет. Гелий, второй по обилию элемент, был открыт лишь годом раньше – до этого о его существовании даже не подозревали, – да и то не на Земле, а на Солнце, где его обнаружили с помощью спектроскопа во время солнечного затмения, потому он и был назван в честь греческого бога солнца Гелиоса. В лаборатории его не могли выделить до 1895 года. Но при всем том именно благодаря изобретению Менделеева химия теперь твердо стояла на ногах.

Для большинства из нас периодическая таблица – красивая абстракция, а для химиков она сразу установила порядок и ясность, которые вряд ли можно переоценить. «Периодическая таблица химических элементов, несомненно, является самой ясной и простой из систематизирующих таблиц, когда-либо разработанных», – писал Роберт Э. Кребс в «Истории и использовании земных химических элементов», – и вы найдете подобные оценки практически в каждом труде по истории химии.

Сегодня мы имеем «120 или около того» известных элементов – 92 встречающихся в природе плюс пара дюжин созданных в лабораториях. Точное их число – вопрос дискуссионный, потому что искусственно синтезированные тяжелые элементы живут лишь миллионные доли секунды, и химики иногда спорят, действительно ли они были обнаружены[112 - По данным Объединенного института ядерных исследований в Дубне (ОИЯИ), к 2012 году были получены элементы с номерами до 118-го.]. Во времена Менделеева было известно всего шестьдесят три элемента, но к его заслугам надо отнести и понимание того, что известные тогда элементы не создают полной картины и что многих частей в ней еще недостает. Его таблица с доставляющей удовлетворение точностью прогнозировала, где будут располагаться элементы, когда их обнаружат.

Кстати, никто не знает, как велико может быть количество элементов, однако об элементах с атомным номером, скажем, в районе 168, можно говорить «исключительно гипотетически»; но вот о чем можно говорить со всей определенностью, так это о том, что все найденное замечательно вписывается в великую систему Менделеева.

Но у XIX века был припасен для химиков еще один, последний важный сюрприз. Все началось в 1896 году с того, что в Париже А. Беккерель нечаянно оставил в ящике стола на фотографической пластинке пакетик с солями урана. Когда он позднее достал пластинку, то с удивлением обнаружил, что соли выжгли в ней следы, как если бы она засветилась. Соли испускали какое-то излучение[113 - В мае 2006 г. в ОИЯИ были впервые исследованы химические свойства 112-го элемента. В соответствии с Периодической таблицей он оказался химическим аналогом ртути.].

Учитывая важность того, что он обнаружил, Беккерель поступил довольно странно: поручил исследовать это явление одной из аспиранток. К счастью, этой аспиранткой оказалась незадолго до того эмигрировавшая из Польши Мария Кюри. Работая вместе с мужем Пьером, Кюри обнаружила, что определенные виды горных пород постоянно выделяют значительное количество энергии, не уменьшаясь, однако, в размерах и не изменяясь каким-либо заметным образом. Чего ни она, ни ее муж не знали – и чего не знал никто, пока Эйнштейн не объяснил это в следующем десятилетии, – так это того, что данные породы чрезвычайно эффективно превращают массу в энергию. Мария Кюри окрестила этот эффект «радиоактивностью». В процессе работы супруги Кюри также открыли два новых элемента – полоний, названный в честь родины Марии, и радий. В 1903 году супругам Кюри и Беккерелю была совместно присуждена Нобелевская премия по физике. (Мария Кюри в 1911 году получит еще одну премию, в области химии; она единственный человек, получивший премию и по химии, и по физике.)

В Университете Макгилла в Монреале новыми радиоактивными материалами заинтересовался молодой уроженец Новой Зеландии Эрнест Резерфорд. Вместе с коллегой Фредериком Содди он открыл, что в небольших количествах этих веществ заключены огромные запасы энергии и что радиоактивным распадом в значительной мере может объясняться земное тепло. Они также обнаружили, что радиоактивные элементы распадаются на другие элементы – что один день вы имеете, скажем, атом урана, а на следующий день он уже может оказаться атомом свинца. Это было поистине невероятно. Алхимия в чистом виде; никто даже не представлял, что такие вещи могут происходить в природе самопроизвольно.

Прирожденный прагматик, Резерфорд первым увидел возможность практического использования этого явления. Он заметил, что для распада половины любого образца радиоактивного материала всегда требуется одно и то же время – знаменитый период полура спада[114 - Возможно, вы когда-нибудь задавались вопросом, как атомы определяют, каким 50 процентам суждено погибнуть, а каким – продолжать жить до следующего раза. На это можно ответить, что период полураспада берется просто для удобства подсчета – это своего рода актуарная таблица элементарных частиц. Представьте, что у вас имеется образец вещества с периодом полураспада 30 секунд. Это не означает, что каждый атом образца будет существовать точно 30, или 60, или 90 секунд, или какое-то точно предназначенное время. Каждый атом фактически будет существовать совершенно произвольный период времени, вовсе не кратный 30; он может просуществовать две секунды, а может продержаться на протяжении нескольких лет, десятилетий или столетий. Никто не в силах этого предсказать. Но зато можно утверждать, что интенсивность исчезновения в целом по образцу такова, что половина атомов исчезает каждые 30 секунд. Это средний темп распада; другими словами, это характеристика, применимая к любой большой выборке. Например, кто-то однажды вычислил, что период полураспада американских десятицентовиков составляет примерно тридцать лет.] и что неизменное постоянство темпов этого распада можно использовать наподобие часов. Определив нынешний уровень из лучения вещества и зная скорость его распада, можно вычислить его возраст. Резерфорд провел опыт над уранинитом, основным элементом урановой руды, и установил, что ему 700 миллионов лет, то есть намного старше возраста, который большинство людей было готово дать Земле.

Весной 1904 года Резерфорд отправился в Лондон прочитать лекцию в Королевском институте, высокочтимой организации, учрежденной графом фон Румфордом всего за 105 лет до этого, в эпоху напудренных париков, которая казалась глубокой древностью в сравнении с работящей выносливостью поздней викторианской эпохи. Резерфорд ехал рассказать о своей новой распадной теории радиоактивности и для иллюстрации вез с собой кусок уранинита. Учитывая присутствие на заседании престарелого лорда Кельвина (пусть иногда и засыпающего), Резерфорд тактично заметил, что, согласно предположению самого Кельвина, открытие некоего нового источника тепла может полностью изменить его расчеты возра ста Земли. Резерфорд нашел такой источник. Благодаря радиоактивности Земля может быть – и, само собой разумеется, была – намного старше 24 миллионов лет, которые полагались ей согласно последним расчетам Кельвина.

Кельвин одарил лучезарной улыбкой почтительное изложение результата опытов Резерфорда, но, в сущности, отнесся к нему равнодушно. Он так и не признал пересмотренные цифры и до конца своих дней считал труд о возрасте Земли своим глубочайшим и важнейшим вкладом в науку – намного более значительным, чем труды по термодинамике.

Как и большинство научных революций, новые открытия Резерфорда не встретили единодушного одобрения. В Дублине Джон Джоли до первой половины 1930-х годов, то есть до самой смерти, усиленно настаивал, что возраст Земли не превышает 89 миллионов лет. Других стало волновать то, что Резерфорд отпустил им слишком большой срок. Но даже при использовании радиодатирования, как стали называть измерения времени по радиоактивному распаду, потребовались десятки лет, прежде чем мы получили действительный возраст Земли, составляющий миллиарды лет. Наука была на правильном пути, но еще довольно далека от цели.

Кельвин умер в 1907 году. Этот год был также свидетелем кончины Дмитрия Менделеева. Как и у Кельвина, его плодотворные труды остались далеко в прошлом, но преклонные годы были заметно менее спокойными. С возрастом Менделеев все больше отличался упрямством и эксцентричностью, например, он отказывался признавать существование радиации[115 - Первоначально Менделеев действительно очень скептически отнесся к сообщениям об открытии радиоактивности, и у него были все основания не доверять этой сенсации. Однако в 1902 г. он посетил лабораторию Беккереля и убедился в существовании явления радиоактивности. Для его объяснения он пытался построить собственную теорию, основанную на гипотетическом элементе эфире, который должен быть легче водорода, но это оказалось ошибочным ходом.], электронов и многие другие новые вещи. Последние десятилетия он большей частью сердито хлопал дверьми в лабораториях и лекционных залах по всей Европе. В 1955 году элемент 101 был назван в его честь менделевием. «Подходящее название, – отмечает Пол Стразерн[116 - Пол Стразерн (Paul Strathern, р. 1940) – британский лектор, популяризатор науки и философии, автор книги «Мечта Менделеева», профессор университета Кингстона (Лондон).], – это нестабильный элемент».

Радиоактивное излучение, разумеется, продолжало существовать и давало о себе знать такими явлениями, каких никто не ожидал. В начале 1900-х годов у Пьера Кюри стали проявляться первые признаки лучевой болезни – в частности, тупые боли в костях и постоянное недомогание, – которые, несомненно, привели бы к большим неприятностям. Но мы никогда определенно этого не узнаем, потому что в 1906 году он погиб, переходя улицу в Париже, под колесами наехавшего на него экипажа.

Мария Кюри всю оставшуюся жизнь посвятила работе в этой области и весьма преуспела, в 1914 году она принимала участие в создании знаменитого Радиевого института при Парижском университете. Несмотря на две Нобелевские премии, ее так и не избрали в Академию наук, в значительной мере из-за того, что после смерти Пьера она вступила в любовную связь с женатым физиком, настолько нескромную, что шокировала даже французов – или по крайней мере возглавлявших академию стариков, что, пожалуй, не одно и то же.

Долгое время считалось, что все обладавшее такой чудесной энергией, как радиоактивность, должно быть целительным. Производители зубной пасты и слабительных средств много лет добавляли в свои продукты радиоактивный торий, и по крайней мере до конца 1920-х годов санаторий «Глен-Спрингс» на озере Сенека-лейк в штате Нью-Йорк (как, несомненно, и многие другие) с гордостью рекламировал лечебные свойства своих «радиоактивных минеральных источников». Радиоактивные вещества было запрещено применять в потребительских товарах лишь в 1938 году. Но было уже слишком поздно для Марии Кюри, скончавшейся в 1934 году от лейкемии. Радиоактивность оказалась настолько пагубной и долгоживущей, что и теперь ее бумагами, относящимися к 1890-м годам – даже поваренными книгами, – слишком опасно пользоваться. Ее тетради с лабораторными записями хранятся в выстланных свинцом коробках, а желающие их увидеть должны облачиться в защитную одежду.

Благодаря самоотверженной и неосознанно опасной работе первых ученых-атомщиков в начале XIX века стало ясно, что у Земли, несомненно, весьма почтенный возраст, хотя исследователям потребовалось еще полвека, чтобы уверенно и точно сказать, насколько он почтенен. Тем временем наука вступала в свой новый век – атомный.

Часть III. На заре нового века

Физика – это способ атомов думать об атомах.

    Неизвестный автор

Глава 8. Вселенная Эйнштейна

По мере того как XIX век подходил к концу, ученые могли все более удовлетворенно думать о том, что они разгадали большинство тайн физического мира – назвать хотя бы электричество, магнетизм, газы, оптику, акустику, кинетику и статистическую механику, – все это выстроилось перед ними в образцовом порядке. Ученые открыли рентгеновские и катодные лучи, электрон и радиоактивность, придумали ом, ватт, кельвин, джоуль, ампер и крошечный эрг[117 - Не все из этих физических единиц появились в XIX веке. Джоулем и ампером стали пользоваться только в середине XX века. При жизни лорда Кельвина единицу измерения абсолютной температуры, конечно, тоже не называли кельвином.].

Если что-то можно колебать, ускорять, возмущать, дистиллировать, соединять, взвешивать или превращать в газ, то всего этого они достигли и попутно произвели на свет массу универсальных законов, таких весомых и величественных, что их так и хочется писать с заглавных букв[118 - Это справедливо в отношении английского языка.]. Электромагнитная полевая теория света, Закон эквивалентов Рихтера, Закон Шарля для идеального газа, Закон сообщающихся сосудов, Нулевое Начало Термодинамики, Концепция валентности, законы Действующих масс и бесчисленное множество других. Во всем мире лязгали и пыхтели машины и орудия, плоды изобретательности ученых. Многие умные люди считали тогда, что науке уже почти нечего больше делать.

Когда в 1875 году молодой немец из Киля Макс Планк решал, посвятить ли себя математике или физике, его горячо убеждали не браться за физику, потому что в этой области все решающие открытия уже сделаны. Предстоящее столетие, заверяли его, будет веком закрепления и совершенствования достигнутого, а никак не революций. Планк не послушал. Он взялся за изучение теоретической физики и целиком отдался работе над понятием энтропии, концепцией, лежащей в самой основе термодинамики, которая представлялась весьма многообещающей честолюбивому молодому ученому[119 - Если быть конкретнее, энтропия – это мера хаотичности или разупорядоченности в системе. Даррелл Эббинг в учебнике «Общая химия» очень удачно поясняет это на примере колоды карт. В новой упаковке, только что вынутой из коробки, карты сложены по мастям и по старшинству – от тузов к королям, – можно сказать, что карты в ней находятся в упорядоченном состоянии. Перетасуйте карты, и вы создадите беспорядок. Энтропия – численно характеризует, насколько беспорядочно это состояние, и помогает определить вероятности различных результатов дальнейшей перетасовки. Чтобы полностью постичь энтропию, необходимо также иметь представление о таких понятиях, как тепловые неоднородности, кристаллические решетки, стехиометрические отношения, но здесь была представлена самая общая идея.]. В 1891 году он представил результаты своих трудов и, к своему крайнему замешательству, узнал, что вся важная работа по энтропии фактически уже была сделана скромным ученым из Йельского университета по имени Дж. Уиллард Гиббс.

Гиббс, пожалуй, самая блестящая личность из тех, о ком большинство людей никогда не слышали. Застенчивый, почти незаметный, он, по существу, прожил всю жизнь, за исключением трех лет учебы в Европе, в пределах трех кварталов, ограниченных его домом и территорией Йельского университета в Нью-Хейвене, штат Коннектикут. Первые десять лет работы в Йеле он даже не позаботился о получении жалованья. (У него был независимый источник доходов.) С 1871 года, когда он занял в университете должность профессора, и до смерти в 1903 году его курс привлекал в среднем чуть больше одного студента в семестр. Написанная им книга была трудна для понимания, а используемые им собственные обозначения многие считали непонятными. Но в этих его непонятных формулировках скрывались поразительно яркие догадки.

В 1875–1878 годах Гиббс выпустил серию работ под общим названием «О равновесии гетерогенных субстанций», где блестяще излагались принципы термодинамики, можно сказать, почти всего – «газов, смесей, поверхностей, твердых тел, фазовых переходов… химических реакций, электрохимических ячеек, осмоса и выпадения в осадок», – перечисляет Уильям Кроппер[120 - Уильям Кроппер (William H. Cropper) – почетный профессор химии университета Сент-Лоуренс в Нью-Йорке. Автор книги «Великие физики: от Галилея до Ньютона».]. По сути, Гиббс показал, что термодинамика имеет отношение к теплу и энергии не только в масштабах больших и шумных паровых машин, но также оказывает существенное влияние на атомарном уровне химических реакций. «Равновесие» Гиббса назвали «Началами термодинамики»[121 - Тем самым подчеркивалась сопоставимость труда с «Началами» Ньютона.], однако по не поддающимся объяснению соображениям Гиббс предпочел опубликовать сыгравшие такую важную роль результаты своих исследований в «Трудах Коннектикутской Академии искусств и наук» – журнале, которому удавалось быть почти неизвестным даже в Коннектикуте, потому-то Планк и узнал о Гиббсе, когда было уже поздно.

Не утратив присутствия духа – но, скажем, слегка обескураженный, – Планк обратился к другим предметам[122 - Планку в жизни часто не везло. Любимая первая жена умерла рано, в 1909 году, а младший из двух сыновей погиб в Первую мировую войну. У него также было двое дочерей-близнецов, которых он обожал. Одна умерла при родах. Другая взялась присматривать за маленькой девочкой и влюбилась в мужа ее сестры. Они поженились, и два года спустя она тоже умерла во время родов. В 1944 году, когда Планку было восемьдесят пять лет, в его дом попала бомба союзников [по антигитлеровской коалиции], и он потерял все – бумаги, дневники, все, что было собрано за целую жизнь. В следующем году его оставшийся в живых сын был уличен в заговоре с целью убийства Гитлера и казнен.]. Мы вскоре вернемся к ним, но сначала ненадолго (но по делу!) заглянем в Кливленд, штат Огайо, в учреждение, называвшееся тогда Школой прикладных наук Кейза. Там в 1880-х годах сравнительно молодой физик Альберт Майкельсон и помогавший ему приятель-химик Эдвард Морли предприняли серию экспериментов, получив любопытные и вызвавшие озабоченность результаты, которые окажут огромное влияние на последующее развитие событий.

По существу, Майкельсон и Морли непреднамеренно подорвали давно сложившуюся веру в существование некой субстанции, называемой светоносным эфиром, – стабильной, невидимой, невесо мой, неощутимой и, к сожалению, всецело воображаемой среды, которая, как считалось, пропитывает всю Вселенную. Порожденный Декартом, с готовностью принятый Ньютоном и почитаемый с тех пор почти всеми эфир занимал самое центральное место в физике XIX века, позволяя объяснить, как свет перемещается сквозь пустоту пространства. В нем особенно нуждались, потому что свет стали рассматривать как электромагнитные волны, то есть своего рода вибрации. А вибрации должны происходить в чем-то; отсюда потребность в эфире и долгая к нему приверженность. Еще в 1909 году выдающийся английский физик Дж. Дж. Томсон[123 - Дж. Дж. Томсон (Joseph John Thomson, 1856–1940) – английский физик, первооткрыватель электрона.] категорически утверждал: «Эфир – это не порождение фантазии спекулятивного философа; он так же необходим нам, как необходим воздух, которым мы дышим». И это спустя более чем четыре года после того, как было совершенно неоспоримо доказано, что его не существует. Словом, люди очень сильно привязались к эфиру.

Если бы вам потребовалось проиллюстрировать представление об Америке XIX века как о стране открытых возможностей, вряд ли вы нашли бы лучший пример, нежели карьера Альберта Майкельсона. Он родился в 1852 году на польско-германской границе в семье бедных еврейских торговцев, в раннем детстве переехал с семьей в Соединенные Штаты и вырос в Калифорнии, в лагере на приисках во время «золотой лихорадки», где его отец торговал одеждой. Не имея возможности по бедности платить за учебу в колледже, Альберт отправился в Вашингтон, округ Колумбия, и стал околачиваться у дверей Белого дома, чтобы во время ежедневного президентского моциона попадаться на глаза Улиссу С. Гранту. (То был куда более наивный век.) В ходе этих прогулок Майкельсон настолько снискал расположение президента, что тот согласился предоставить ему бесплатное место в Военно-морской академии США. Именно там Майкельсон освоил физику.

Десять лет спустя, уже будучи профессором в кливлендской Школе прикладных наук, Майкельсон заинтересовался возможностью измерить движение эфира – нечто вроде встречного ветра, который испытывают объекты, прокладывающие себе путь сквозь пространство. Одно из предсказаний ньютоновской физики заключалось в том, что скорость света, движущегося в эфире, должна меняться в зависимости от того, приближается наблюдатель к источнику света или удаляется от него, но никто еще не придумал способа измерить это. Майкельсону пришло в голову, что за полгода направление движения Земли вокруг Солнца меняется на противоположное. Поэтому, если выполнить тщательные измерения при помощи очень точного прибора и сравнить скорость движения света в противоположные времена года, то можно получить ответ.

<< 1 ... 5 6 7 8 9 10 11 >>
На страницу:
9 из 11