Оценить:
 Рейтинг: 0

Time Telling through the Ages

Автор
Год написания книги
2017
<< 1 2 3 4 5 6 ... 31 >>
На страницу:
2 из 31
Настройки чтения
Размер шрифта
Высота строк
Поля

Through all this age man continued to regulate his expanding affairs by the timepieces of the sky – the sun, the moon, and the stars. He divided time roughly into days and parts of days, into nights and watches of the night, into moons and seasons – determining the latter probably by the migration of birds, the budding of trees and flowers, the falling of leaves and other happenings in nature. But never guessing how greatly interested future generations would be in the way he did things, he has left only a few records of his activities and these have been preserved by the merest accident. The historian and the press-agent were the inventions of later days.

Thus we come down the ages to a date about 4000 B. C. at the very beginning of recorded history, and to one of the most ancient civilizations in the world – that of the region which we now call Mesopotamia. Mesopotamia lies in southwestern Asia between the Tigris and Euphrates Rivers and not far from the traditional site of the Garden of Eden. The name by which we know it comes from the Greek, and means, "The land between the rivers" but the people who dwelt there at the time to which we refer called it the "Land of Shinar."

This is the region in which long afterward – so the Bible tells us – Abraham left his native town, Ur of the Chaldees, to make his pioneer journey to Palestine. This is the land where the great cities of Babylon and Nineveh afterward arose; Babylon, where Daniel interpreted the dream of King Nebuchadnezzar, and Nineveh, whence the Assyrians, the fierce conquerors of the ancient world, "came down like a wolf on the fold" against the peaceful Kingdom of Judah. It is the land where, thousands of years later, the famous Arab capital of Bagdad was built; it is the land of Harun al Raschid and the "Arabian Nights," and the land which the British Army conquered in a remarkable campaign against the Turks and Germans. Mesopotamia is a land of color, brilliant life, wonders and romance. Many students and statesmen believe that it will, in days to come, grow fruitful and populous again, that it will once more be great among the countries of the earth. It is a flat region, with wide-stretching plains. For the most part, there are no hills to limit the view of the skies, and the heavens are brilliant upon starry nights.

In this favored portion of the earth, a high civilization had already been developed in the very earliest days of which we have authentic historic record. The caveman type had long disappeared and had been forgotten; people were already living in well-built cities of brick and stone. Their houses were low and flat-roofed, but the cities were surrounded with high and massive walls to protect them from enemies, and here and there within rose great square towers which were also temples. Perhaps the famous Tower of Babel was one of these, for Babel, of course, is another name for Babylon, and its people are known to have worshipped on the tops of towers, as if, by so doing, they could reach nearer to their gods. The ancient Chaldeans were religious by nature, and because the skies contained the greatest things of which they knew, they identified many of their gods with the sun, the moon, and the stars, and they worshipped these in their temples.

Thus, the sun was the god Shamash, the moon was Sin, Jupiter was Marduk, Venus was Ishtar, Mars was Nergal, Mercury was Nebo, and Saturn was Ninib.

In consequence, their priests came to give much of their time to a study of the movements of the stars. These priests, who were shrewd and learned men, discovered a great deal, but they kept their knowledge closely within the circle of their caste. Learning was not for everyone in those days because the priests posed as magicians able to interpret dreams, to explain signs, and to foretell the future. This brought them much revenue; as prophets they were not unmindful of profits.

When we consider that these astrologer-astronomers did not have telescopes or our other modern instruments, it is marvelous to see how many of the laws of the heavenly bodies they really did find out for themselves. Books could be filled, with the story of their discoveries. For example, they observed that the sun slowly changed the points at which it rose and set. During certain months, the place of sunrise traveled northward, and at the same time the sun rose higher in the sky, and at noon was more nearly overhead. At this time, the days were also longer, because the sun was above the horizon more of the time, and then it was summer. During certain other months, the sun traveled south again, and all these conditions were reversed; the days grew shorter and shorter, and it was winter. This is, of course, exactly what the sun appears to do here and now, and we may observe it for ourselves. But these Babylonian priests were the first to study these phenomena and accomplish something by applying their reasoning powers to the facts that presented themselves. They took the time which was consumed in this motion from the furthest north to the furthest south and return, and from that worked out their year.

In order to calculate time, they next devised the zodiac, a sort of belt encircling the heavens and showing the course of the sun, and the location of twelve constellations, or groups of stars, through which he would be seen to pass if his light did not blot out theirs. They divided the region of these twelve constellations into the same number of equal parts; consequently, the sun passing from any given point around the heavens to the same point, occupied in so doing an amount of time that was arbitrarily divided into twelfths.

But they also devised another twelve-part division of the year. They noticed that the moon went through her phases, from full moon to full moon in about thirty days. So one moon, or one month, corresponded with the passage of the sun through one "sign" of the zodiac. Our own word "month" might have been written "moonth," since that is its meaning. That gave them a year of twelve months, each month having thirty days, or three hundred and sixty days in all.

Then from the seven heavenly bodies which they had identified with seven great gods, they got the idea of a week of seven days, one day for the special worship of each god and named for him.

In like manner, they divided the day and the night each into twelve hours; and the hour into sixty minutes and these again into sixty seconds. The choice of "sixty" was not a chance shot or accident; it was carefully selected for practical reasons since these old astronomers were wise and level-headed men. No lower number can be divided by so many other numbers as can sixty. Just look at your watch for a moment and notice how simply and naturally the minutes, divided into fives, fit into place between the figures for the hours, and, because sixty divides evenly by fifteen and thirty, we have quarter-hours and half-hours.

Therefore, we should realize, with a bit of gratitude, that we owe these divisions of time, of which we still make use, to the ancient magician-priests of Babylon and Chaldea, thousands and thousands of years ago.

In doing all this, these early scientists developed at the same time an elaborate system of so-called "magic" by which they pretended to foretell future events and the destinies of men born on certain days. This was an important part of their priestcraft, and probably it was not the least profitable part. In fact, the priests called themselves magi, meaning "wise men" in their language, and our word "magic" is derived from "magi."

This magic, or prophetic study of the stars, we call astrology to distinguish it from the true science of astronomy. But mingled with it all, these priests possessed a wonderful amount of genuine scientific knowledge. Their year of three hundred and sixty days was, of course, five days too short, as they presently found out for themselves. In six years, the difference would amount to thirty days, which was exactly the length of one of their months. So they corrected the calendar very easily by doubling the month Adar once in six years. Thus, every sixth year contained thirteen months instead of twelve; that was the origin of the leap-year principle which we still use, although more accurately. It can be seen that, with all their superstition and their befooling of other people, the priests themselves were by no means ignorant; they were really keen observers.

This calendar, by which we still measure the years and the seasons, is so interesting a thing that it is worth while to pause for a moment in our story in order to trace out its later development. The Babylonian calendar remained practically the same up to the time of Julius Caesar, only a few years before the Christian Epoch. The names of the months had naturally been changed into the Latin language; and the Romans, instead of doubling a whole month, had come to add the extra five days to several months, one day to each. That is the reason for some of our months having thirty-one days.

When Caesar was Dictator of Rome, it had become known that the year of exactly 365 days was still a little too short. It should have been 365¼. So Caesar in reforming the calendar, provided that the first, third, fifth, seventh, ninth, and eleventh months should be given thirty-one days each, and that the others should have thirty days, except in the case of February which should have its thirtieth day only once in four years. A little later, his successor, the Emperor Augustus, after whom the month of August is named, decided that his month must be as long as July, which was Julius Caesar's month. Therefore, he stole a day from February and added one to August; then he changed the following months by making September and November thirty-day months and giving thirty-one days to October and December.

The Julian calendar, with these changes by Augustus, remained in use until the year A. D. 1582, nearly a century after the discovery of America. Then it was learned that the average year of 365¼ days was still not exactly right according to the motion of the earth around the sun. The exact time is 365 days, 5 hours, 48 minutes and 46 seconds, being 11 minutes and 14 seconds less than 365¼ days. When, therefore, we add a day to the year every four years, as Caesar commanded, we are really adding too much. This excess was corrected by Pope Gregory XII in 1582, when he changed the calendar so that the last year of a century should be a leap-year only when its number could be divided evenly by 400. Thus, 1700, 1800, and 1900 were not leap-years, though the year 2000 will be. This new calendar, which is the one now generally in use in most of the world, is known as the Gregorian calendar.

Thus the plan and principle of the calendar, as well as our smaller divisions of time, in spite of the small changes by Caesar and Gregory, have remained from the Babylonian days down to the present; and we have done nothing to their system in all these thousands of years, except, incidentally to correct it.

Only once in history have the measures of the ancient calendar been set aside. That was in France at the time of the Revolution, when the French people, in their passionate hatred of all the traditional things that reminded them of their past sufferings, invented a new calendar, in which they changed the names of months and days, and counted the years from 1792, the first of their liberty. They also abolished all Sundays and religious festivals, and divided the day into ten hours. This played havoc with time-keeping, and caused great confusion. Watches and clocks were made with one circle of numbers for the new hours, and another, within, on which were shown the old hours which people could understand. But this complication lasted only a few years, for the traditional system was soon restored.

To return again to the era of the first calendar. While the wise men of Mesopotamia were engaged in mingling science and mystery, another civilization, the Egyptian, was developing upon the banks of the Nile and passing through much of the same stages. In due course the Persians conquered both Mesopotamia and Egypt and absorbed their knowledge. Still later the wonderful Greek nation combined astronomy with mathematics in a way which makes us wonder to this day. This is the way in which civilization has grown. Race after race, during century after century has added its new knowledge and discoveries to that which has been learned before. It is interesting to note that the astronomy of the Babylonians appears to have been paralleled independently by other ancient civilizations between which there was no apparent possibility of intercourse. The Chinese in the East and the Aztecs of Mexico, on the other side of the world, invented practically the same astronomical instruments as the Babylonians and made similar discoveries. All methods of indicating time have been steps upon the long road which has led to the making of modern timepieces.

The progressive Greeks did not permit knowledge to be monopolized by the priesthood and probably their common people knew more about the stars than most of the population of America do to this day. Sailors possessed no compasses, but they voyaged very skilfully with the guidance of the stars, while farmers, lacking our modern weather-reports and crop-bulletins, learned to govern their planting and harvesting by the positions of the heavenly bodies.

In one sense, this is time-telling and in another it is not, but our ideas of time and astronomy have always been so closely associated that it is hard to think of one apart from the other. This is because the movements of the earth, which produce night and day and the changes of the seasons, are our supreme court of time, our final standard for its measurement. And since we cannot see the earth move, we judge of its motion by the apparent movement of the heavenly bodies, just as we realize the movement of a train by watching the landscape rush past us as we go.

Some of the great Greek scientists, by the way, had even learned to foretell eclipses of the sun. According to Herodotus the one which occurred on May 28th, in the year 585 B. C., was predicted by Thales of Miletus, one of the famous "Seven Wise Men." This event was also celebrated because of another interesting association; it stopped a battle between the armies of the Medes and the Lydians. Perhaps we can guess at what happened. Undoubtedly the eclipse was interpreted by the armies as a sign of divine anger, for the ancients identified many of the forces and objects of nature as gods, and Phoebus Apollo, who it was believed daily drove his flaming chariot across the sky, was the great divinity of the sun. Furthermore, these gods were very apt to meddle with happenings upon the earth, particularly with wars, as anyone who has read the "Iliad" will recall.

Imagine, then, the two armies about to go to battle when suddenly something appeared to go wrong with the sun. There to their amazement, in a cloudless sky, a dimming shadow touched the edge of the sun's shining disk and began slowly to blot it out. The warriors forgot to fight each other and stared in terror at the sky. The sun dwindled to a crescent; a weird twilight fell upon the earth. Finally, the last thread of brightness disappeared leaving a dull circle in the sky, surrounded by faint bands of light. The gloom of night fell upon the ground. Birds and animals went to their rest.

No further evidence was needed by the superstitious and frightened soldiers. It must be true that Phoebus Apollo was grievously angered, and they forthwith laid down their arms. The sun god, of course, soon showed his approval of this action by coming back into the sky.

This is only one of many tales which might be told to show the state of superstition in those days. Learning, then, was confined to the few, and in many instances was used to mystify or terrorize the mass of the people and thus keep them submissive. At best, new ideas were slow to grow or to be believed.

For example, Pythagorus, the great Greek philosopher of the sixth century B. C., believed the earth to be a globe, but it was not until Columbus discovered America – twenty centuries later – that people generally began to know that it was not flat. Even in these modern days of the public school, the press, the telephone, the telegraph, the wireless and other means for the wide-spread distribution of knowledge, how slowly does truth find its way to acceptance! To this day, superstition is by no means dead.

Even Mark Twain, who scoffed at superstition all his life, often said that, as he came into the world with Halley's Comet, in the year 1835, so he expected to die in 1910, the year of the comet's next appearance. Strangely enough, his half-jesting prophecy was fulfilled, for he really did die in that year.

Astronomers to-day can figure out in advance what is to happen in the heavens with an exactness which would have seemed magical in olden times, and is hardly less astonishing even now. Their power is largely due to improved scientific instruments, proficiency in mathematics and greater accuracy in the measurement of time. Not only is the date of an eclipse of the sun now known in advance, but so also is the exact path of the shadow across the world, and the instant of its appearance in any given place.

We now have glanced briefly at a few of the features of early humanity's dependence upon the clocks of nature and the way in which they influenced its manner of life. We still depend upon these great primeval timepieces and we do it for the most part unconsciously, for our master clocks must still be set by the motion of the heavenly bodies.

That motion, which now we know to be really the revolution of our earth, is still the legislator and supreme court of time. But we have learned to make and carry everywhere a wonderful machine, whose revolving wheels and pointing hands keep tryst with the stars in the heavens and move to the rhythm of wheeling worlds. And so familiar is this talisman of man's making, that we forget to look beyond it or think of time at all save as the position of the hands upon the dial.

We carry with us carelessly a toy which tells tales upon the solar system – our watch is a pocket universe.

CHAPTER THREE

How Man Began to Model After Nature

We now have reached a point far ahead of our story and must take a backward step. We have been seeing man as a mere observer of nature; but man doesn't stop with nature as he finds it – his man-brain drives him forward; he must make improvements of his own. Animals may live and die and leave no trace save their bones, which for the most part soon disappear, but man always leaves traces behind him. He has always interfered with nature, or rather has modeled after nature, seeing in her work the revelations of principles and laws that he might utilize in varying ways for his own benefit and progress. Our material civilization is built up from the accumulated results of all this study and control of nature by hundreds of millions of busy brains and hands, through tens of thousands of years.

Here we are, then, living, in a sense on the top of the ages of human history, like the dwellers on a coral island. Hundreds of generations have toiled to raise the vast structure for us, like the little coral "polyps" which build their own lives into the mass, yet we take it all as a matter of course and rarely give a thought to the marvelous ways by which it has come about. You may have just glanced at your watch. To you, perhaps, a watch has always seemed merely a small mechanism which was bought in a store. That is true, and yet – remember this – the first manufacturer who had a hand in producing that watch for you, may have been a caveman.

In order to appreciate this development, let us return, therefore, for another rapid view of prehistoric times; life in its crudest form – one day much like another – a scanty population, huddled in little groups in places naturally sheltered – the simplest physical needs to be provided for – little thought of the past or care for the future – time-reckoning reduced to the single thought of appointment – no reason for measuring intervals – in these and other respects antiquity presented the greatest possible contrast to our complicated modern life.

The long-armed man of our first chapter noticed that as the sun moved, the shadows of the cliff also moved, as did all other shadows. As he formed habits of regularity, it was natural for him to perform a certain daily act when, perhaps, the shadow of a certain tree touched upon a certain stone. This would be a natural sun-dial.

But a thinner, sharper shadow would be easier to observe; suppose, therefore, that some successor to the long-armed man set up a pole in some open space and laid a stone to mark the spot where the shadow fell when the sun was highest in the heavens. That would be an artificial sun-dial —a device deliberately planned to accomplish a certain purpose. The man who first took such a step was probably the first manufacturer who had a hand in supplying you with your watch. The shaggy mammoth, the terrible saber-tooth tiger and the eohippus, the small ancestor of our modern horse, must have been familiar sights when time-recording at the hands of some rude, unconscious inventor thus began the long story of its development.

One stone reached by the moving shadow would mark only one point of time each day. Why not place two stones, three stones, or even more and get more markings? Such a procedure would be more useful because it would indicate the time of other happenings in the course of the day. The sun would pass across the skies and the shadow must travel around the pole. What more natural than to place the stones in a circle and get a series of these markings?

Of course, as the ages passed, life became more complex – not complex as we would consider it to-day, but, as compared with its rude beginnings. New habits were formed, new needs developed, new activities were undertaken at different periods.

Here, then, was the sprouting of modern civilization – the beginning of that specializing of each man in his own particular direction that has carried the world to its present high state of expertness in so many fields. Slowly steadily, and inevitably this principle of specialization has been developed. With the increase of laws, for example, certain men came to give them special study and then to sell their knowledge and skill to other men who had no opportunity for such study. In course of time, the aggregation of laws became so great that these lawyers were forced to specialize among themselves; to-day, therefore, we find a number of classes of law specialists. The same thing is true of doctors who have limited their practise until we find those who treat the eye only, or the lungs, the stomach, or the teeth. Even the treatment of the teeth has been subdivided, some dentists limiting themselves to extraction and some of them even to the treatment of a single disease of the gums.

Engineering, too, has branched like a tree and the branches have branched again and yet again. Electrical engineering has come to be divided into so many departments that telephone companies employ specialists in many branches of the engineering profession.

We find the same conditions in any field of thought or activity – all commercial and industrial life is divided and subdivided; labor is specialized; writing is specialized; teaching is specialized; even warfare has become a contest between many kinds of trained specialists, each employing the tools of his trade; and every man's outlook upon life is directed chiefly toward the particular corner of the particular field that he has fitted himself to occupy.

The first step toward this complex condition of the modern world was taken when each man stopped getting his own food, making his own weapons, and providing for all his individual wants without dependence upon others. When he learned to exchange that which he could best produce for that which some other man had learned to make better than he, the human race unconsciously turned away from the status of the birds and the beasts and began the long, slow upward climb that history records.

It was, then, through trade, barter and exchange that man began to acquire the manners of civilized life. Trade itself became a specialized activity, and dealers who did nothing but buy and sell, but themselves produced no material goods, found that a special calling was rightfully theirs. The modern merchant is the heir of one of the first "specialists" in human activity, and the misunderstood work of the so-called "middleman" is one of the bases of modern civilization – a necessary and honorable calling.

Civilization is a thing of the spirit, but it has the support of material things and it has been truly said that the degree of a people's civilization can be measured by the multiplicity of its needs. The savage is content with food, shelter and a covering for his body, but every step in civilization's progress has a more and more complex material accompaniment, and these interwoven relationships of modern life in which the question of time is a most important factor can only be sustained through the use of accurate time-measure. In other words, modern civilization leans upon the watch.

But here again we have run somewhat ahead of our story which, as a matter of fact, had only reached the point of primitive sun-dials. But this anticipation will be excused because of the importance of emphasizing that the growing interdependence of human relations had made it necessary to take into account the convenience of a greater and greater number of people, and this involved closer and closer time-recording in smaller divisions of time by more exact methods.

The sun-dial underwent so many changes that a volume would be needed to describe them all. For example, it was found that the shadow of an upright stick or stone varied from day to day, because, as we have already noticed, the sun rises farther north in summer in the northern hemisphere than it does in winter. So the mark for a certain hour would change as the season changed, and the dial would not indicate time accurately.

Berosus, a Chaldean historian and priest of Bel, or Baal, a god of the old Babylonian, lived about the year 250 B. C., and hit upon a very ingenious way of solving this difficulty. He made the dial hollow like the inside of a bowl. Into this the shadow was cast by a little round ball or bead at the end of a pointer that stood horizontally out over the bowl.
<< 1 2 3 4 5 6 ... 31 >>
На страницу:
2 из 31