108
Application de l’algèbre à géométrie.. Paris, 1705.
109
Elémens de la géométrie de l’infini, by M. de Fontenelle, Paris, 1727, p. 110.
110
Eclaircissemens sur l’analyse des infiniment petits, by M. Varignon, Paris, 1725, p. 87.
111
Application de la géométrie ordinaire et des calculs différentiel et intégral, by M. Robillard, Paris, 1753.
112
Traité de géométrie théorique et pratique, new ed., Paris, 1764, p. 15.
113
Recherches sur les courbes à double courbure, Paris, 1731, p. 13.
114
Analyse des infiniment petits, by the Marquis de L’Hospital. New ed. by M. Le Fèvre, Paris, 1781, p. 41. In this volume passages in fine print, probably supplied by the editor, contain the notation a:b::c:d; the parts in large type give Oughtred’s original notation.
115
The tendency during the eighteenth century is shown in part by the following data: Jacobi Bernoulli Opera, Tomus primus, Geneva, 1744, gives B.A::D.C on p. 368, the paper having been first published in 1688; on p. 419 is given GE:AG=LA:ML, the paper having been first published in 1689. Bernhardi Nieuwentiit, Considerationes circa analyseos ad quantitates infinitè parvas applicatae principia, Amsterdam, 1694, p. 20, and Analysis infinitorum, Amsterdam, 1695, on p. 276, have x:c::s:r. Paul Halcken’s Deliciae mathematicae, Hamburg, 1719, gives a:b::c:d. Johannis Baptistae Caraccioli, Geometria algebraica universa, Rome, 1759, p. 79, has a.b::c.d. Delle corde ouverto fibre elastiche schediasmi fisico-matematici del conte Giordano Riccati, Bologna, 1767, p. 65, gives P:b::r:ds. “Produzioni mathematiche” del Conte Giulio Carlo de Fagnano, Vol. I, Pesario, 1750, p. 193, has a.b::c.d. L. Mascheroni, Géométrie du compas, translated by A. M. Carette, Paris, 1798, p. 188, gives √3:2::√2:Lp. Danielis Melandri and Paulli Frisi, De theoria lunae commentarii, Parma, 1769, p. 13, has a:b::c:d. Vicentio Riccato and Hieronymo Saladino, Institutiones analyticae, Vol. I, Bologna, 1765, p. 47, gives x:a::m:n+m. R. G. Boscovich, Opera pertinentia ad opticam et astronomiam, Bassani, 1785, p. 409, uses a:b::c:d. Jacob Bernoulli, Ars Conjectandi, Basel, 1713, has n-r.n-1::c.d. Pavlini Chelvicii, Institutiones analyticae, editio post tertiam Romanam prima in Germania, Vienna, 1761, p. 2, a.b::c.d. Christiani Wolfii, Elementa matheseos universae, Vol. III, Geneva, 1735, p. 63, has AB:AE=1:q. Johann Bernoulli, Opera omnia, Vol. I, Lausanne and Geneva, 1742, p. 43, has a:b=c:d. D. C. Walmesley, Analyse des mesures des rapports et des angles, Paris, 1749, uses extensively a.b::c.d, later a:b::c:d. G. W. Krafft, Institutiones geometriae sublimoris, Tübingen, 1753, p. 194, has a:b=c:d. J. H. Lambert, Photometria, 1760, p. 104, has C:π=BC²:MH². Meccanica sublime del Dott. Domenico Bartaloni, Naples, 1765, has a:b::c:d. Occasionally ratio is not designated by a.b, nor by a:b, but by a, b, as for instance in A. de Moivre’s Doctrine of Chance, London, 1756, p. 34, where he writes a, b::1, q. A further variation in the designation of ratio is found in James Atkinson’s Epitome of the Art of Navigation, London, 1718, p. 24, namely, 3..2::72..48. Curious notations are given in Rich. Balam’s Algebra, London, 1653.
116
Chr. Clavii Operum mathematicorum tomus secundus, Mayence, 1611, Algebra, p. 39.
117
Invention nouvelle en l’algèbre, by Albert Girard, Amsterdam, 1629, p. 17.
118
La géométrie et pratique générale d’icelle, par I. Errard de Bar-le-Duc, Ingénieur ordinaire de sa Majesté, 3d ed., revised by D. H. P. E. M., Paris, 1619, p. 216.
119
Novae geometriae clavis algebra, authore P. Jacobo de Billy, Paris, 1643, p. 157; also an Abridgement of the Precepts of Algebra. Written in French by James de Billy, London, 1659, p. 346.
120
Miscellanies: or Mathematical Lucubrations, of Mr. Samuel Foster, Sometime publike Professor of Astronomie in Gresham Colledge in London, London, 1659, p. 7.
121
Quarterly Jour. of Pure and Applied Math., Vol. XLVI (London, 1915), p. 191.
122
Pietro Cossali, Origine, trasporto in Italia primi progressi in essa dell’ algebra, Vol. I, Parmense, 1797, p. 52.
123
In Is. Bullialdi astronomiae philolaicae fundamenta inquisitio brevis, Auctore Setho Wardo, Oxford, 1653, p. 1.
124
John Wallis, Algebra, London, 1685, p. 321, and in some of his other works. He makes greater use of Harriot’s symbols.
125
Euclidis data, 1657, p. 1; also Euclidis elementorum libris XV, London, 1659, p. 1.
126
John Kersey, Algebra, London, 1673, p. 321.
127
E. Wells, Elementa arithmeticae numerosae et speciosae, Oxford, 1698, p. 142.
128
Cocker’s Decimal Arithmetick, perused by John Hawkins, London, 1695 (preface dated 1684), p. 278.
129
Th. Baker, The Geometrical Key, London, 1684, p. 15.
130
Richard Sault, A New Treatise of Algebra, London (no date).
131
Richard Rawlinson in a pamphlet without date, issued sometime between 1655 and 1668, containing trigonometric formulas. There is a copy in the British Museum.
132
F. Dulaurens, Specima mathematica, Paris, 1667, p. 1.