Morren has described (26/16. Quoted in 'Journal of Horticulture' February 24, 1863 page 152.) a marvellous flask-shaped flower of the Calceolaria, nearly four inches in length, which was almost completely peloric; it grew on the summit of the plant, with a normal flower on each side; Prof. Westwood also has described (26/17. 'Gardener's Chronicle' 1866 page 612. For the Phalaenopsis see ibid 1867 page 211.) three similar peloric flowers, which all occupied a central position on the flower-branches. In the Orchideous genus, Phalaenopsis, the terminal flower has been seen to become peloric.
In a Laburnum-tree I observed that about a fourth part of the racemes produced terminal flowers which had lost their papilionaceous structure. These were produced after almost all the other flowers on the same racemes had withered. The most perfectly pelorised examples had six petals, each marked with black striae like those on the standard-petal. The keel seemed to resist the change more than the other petals. Dutrochet has described (26/18. 'Memoires...des Vegetaux' 1837 tome 2 page 170.) an exactly similar case in France, and I believe these are the only two instances of pelorism in the laburnum which have been recorded. Dutrochet remarks that the racemes on this tree do not properly produce a terminal flower, so that (as in the case of the Galeobdolon) their position as well as structure are both anomalies, which no doubt are in some manner related. Dr. Masters has briefly described another leguminous plant (26/19. 'Journal of Horticulture' July 23, 1861 page 311.), namely, a species of clover, in which the uppermost and central flowers were regular or had lost their papilionaceous structure. In some of these plants the flower-heads were also proliferous.
Lastly, Linaria produces two kinds of peloric flowers, one having simple petals, and the other having them all spurred. The two forms, as Naudin remarks (26/20. 'Nouvelles Archives du Museum' tome 1 page 137.), not rarely occur on the same plant, but in this case the spurred form almost invariably stands on the summit of the spike.
The tendency in the terminal or central flower to become peloric more frequently than the other flowers, probably results from "the bud which stands on the end of a shoot receiving the most sap; it grows out into a stronger shoot than those situated lower down." (26/21. Hugo von Mohl 'The Vegetable Cell' English translation 1852 page 76.) I have discussed the connection between pelorism and a central position, partly because some few plants are known normally to produce a terminal flower different in structure from the lateral ones; but chiefly on account of the following case, in which we see a tendency to variability or to reversion connected with the same position. A great judge of Auriculas (26/22. The Rev. H.H. Dombrain in 'Journal of Horticulture' 1861 June 4 page 174; and June 25 page 234; 1862 April 29 page 83.) states that when one throws up a side bloom it is pretty sure to keep its character; but that if it grows from the centre or heart of the plant, whatever the colour of the edging ought to be, "it is just as likely to come in any other class as in the one to which it properly belongs." This is so notorious a fact, that some florists regularly pinch off the central trusses of flowers. Whether in the highly improved varieties the departure of the central trusses from their proper type is due to reversion, I do not know. Mr. Dombrain insists that, whatever may be the commonest kind of imperfection in each variety, this is generally exaggerated in the central truss. Thus one variety "sometimes has the fault of producing a little green floret in the centre of the flower," and in central blooms these become excessive in size. In some central blooms, sent to me by Mr. Dombrain, all the organs of the flower were rudimentary in structure, of minute size, and of a green colour, so that by a little further change all would have been converted into small leaves. In this case we clearly see a tendency to prolification — a term which I may explain, for those who have never attended to botany, to mean the production of a branch or flower, or head of flowers, out of another flower. Now Dr. Masters (26/23. 'Transact. Linn. Soc.' volume 23 1861 page 360.) states that the central or uppermost flower on a plant is generally the most liable to prolification. Thus, in the varieties of the Auricula, the loss of their proper character and a tendency to prolification, also a tendency to prolification with pelorism, are all connected together, and are due either to arrested development, or to reversion to a former condition.
The following is a more interesting case; Metzger (26/24. 'Die Getreidearten' 1845 s. 208, 209.) cultivated in Germany several kinds of maize brought from the hotter parts of America, and he found, as previously described, that in two or three generations the grains became greatly changed in form, size, and colour; and with respect to two races he expressly states that in the first generation, whilst the lower grains on each head retained their proper character, the uppermost grains already began to assume that character which in the third generation all the grains acquired. As we do not know the aboriginal parent of the maize, we cannot tell whether these changes are in any way connected with reversion.
In the two following cases, reversion comes into play and is determined by the position of the seed in the capsule. The Blue Imperial pea is the offspring of the Blue Prussian, and has larger seed and broader pods than its parent. Now Mr. Masters, of Canterbury, a careful observer and a raiser of new varieties of the pea, states (26/25. 'Gardener's Chronicle' 1850 page 198.) that the Blue Imperial always has a strong tendency to revert to its parent-stock, and the reversion "occurs in this manner: the last (or uppermost) pea in the pod is frequently much smaller than the rest; and if these small peas are carefully collected and sown separately, very many more, in proportion, will revert to their origin, than those taken from the other parts of the pod." Again, M. Chate (26/26. Quoted in 'Gardener's Chronicle' 1866 page 74.) says that in raising seedling stocks he succeeds in getting eighty per cent to bear double flowers, by leaving only a few of the secondary branches to seed; but in addition to this, "at the time of extracting the seeds, the upper portion of the pod is separated and placed aside, because it has been ascertained that the plants coming from the seeds situated in this portion of the pod, give eighty per cent of single flowers." Now the production of single-flowering plants from the seed of double-flowering plants is clearly a case of reversion. These latter facts, as well as the connection between a central position and pelorism and prolification, show in an interesting manner how small a difference — namely, a little greater or less freedom in the flow of sap towards one part of the plant — determines important changes of structure.]
ANALOGOUS OR PARALLEL VARIATION.
By this term I mean that similar characters occasionally make their appearance in the several varieties or races descended from the same species, and more rarely in the offspring of widely distinct species. We are here concerned, not as hitherto with the causes of variation, but with the results; but this discussion could not have been more conveniently introduced elsewhere. The cases of analogous variation, as far as their origin is concerned, may be grouped, disregarding minor subdivisions, under two main heads; firstly, those due to unknown causes acting on similarly constituted organisms, and which consequently have varied in a similar manner; and secondly, those due to the reappearance of characters which were possessed by a more or less remote progenitor. But these two main divisions can often be separated only conjecturally, and graduate, as we shall presently see, into each other.
[Under the first head of analogous variations, not due to reversion, we have the many cases of trees belonging to quite different orders which have produced pendulous and fastigiate varieties. The beech, hazel, and barberry have given rise to purple-leaved varieties; and, as Bernhardi remarks (26/27. 'Ueber den Begriff der Pflanzenart' 1834 s. 14.), a multitude of plants, as distinct as possible, have yielded varieties with deeply-cut or laciniated leaves. Varieties descended from three distinct species of Brassica have their stems, or so-called roots, enlarged into globular masses. The nectarine is the offspring of the peach; and the varieties of peaches and nectarines offer a remarkable parallelism in the fruit being white, red, or yellow fleshed — in being clingstones or freestones — in the flowers being large or small — in the leaves being serrated or crenated, furnished with globose or reniform glands, or quite destitute of glands. It should be remarked that each variety of the nectarine has not derived its character from a corresponding variety of the peach. The several varieties also of a closely allied genus, namely the apricot, differ from one another in nearly the same parallel manner. There is no reason to believe that any of these varieties have merely reacquired long- lost characters; and in most of them this certainly is not the case.
Three species of Cucurbita have yielded a multitude of races which correspond so closely in character that, as Naudin insists, they may be arranged in almost strictly parallel series. Several varieties of the melon are interesting from resembling, in important characters, other species, either of the same genus or of allied genera; thus, one variety has fruit so like, both externally and internally, the fruit of a perfectly distinct species, namely, the cucumber, as hardly to be distinguished from it; another has long cylindrical fruit twisting about like a serpent; in another the seeds adhere to portions of the pulp; in another the fruit, when ripe, suddenly cracks and falls into pieces; and all these highly remarkable peculiarities are characteristic of species belonging to allied genera. We can hardly account for the appearance of so many unusual characters by reversion to a single ancient form; but we must believe that all the members of the family have inherited a nearly similar constitution from an early progenitor. Our cereal and many other plants offer similar cases.
With animals we have fewer cases of analogous variation, independently of direct reversion. We see something of the kind in the resemblance between the short-muzzled races of the dog, such as the pug and bull-dog; in feather- footed races of the fowl, pigeon, and canary-bird; in horses of the most different races presenting the same range of colour; in all black-and-tan dogs having tan-coloured eye-spots and feet, but in this latter case reversion may possibly have played a part. Low has remarked (26/28. 'Domesticated Animals' 1845 page 351.) that several breeds of cattle are "sheeted," — that is, have a broad band of white passing round their bodies like a sheet; this character is strongly inherited, and sometimes originates from a cross; it may be the first step in reversion to an early type, for, as was shown in the third chapter, white cattle with dark ears, dark feet and tip of tail, formerly existed, and now exist in feral or semi-feral condition in several quarters of the world.
Under our second main division, namely, of analogous variations due to reversion, the best cases are afforded by pigeons. In all the most distinct breeds, sub-varieties occasionally appear coloured exactly like the parent rock-pigeon, with black wing-bars, white loins, banded tail, etc.; and no one can doubt that these characters are due to reversion. So with minor details; turbits properly have white tails, but occasionally a bird is born with a dark-coloured and banded tail; pouters properly have their primary wing- feathers white, but not rarely a "sword-flighted" bird appears, that is, one with the few first primaries dark-coloured; and in these cases we have characters proper to the rock-pigeon, but new to the breed, evidently appearing from reversion. In some domestic varieties the wing-bars, instead of being simply black, as in the rock-pigeon, are beautifully edged with different zones of colour, and they then present a striking analogy with the wing-bars in certain natural species of the same family, such as Phaps chalcoptera; and this may probably be accounted for by all the species of the family being descended from the same remote progenitor and having a tendency to vary in the same manner. Thus, also, we can perhaps understand the fact of some Laugher-pigeons cooing almost like turtle-doves, and for several races having peculiarities in their flight, since certain natural species (viz., C. torquatrix and palumbus), display singular vagaries in this respect. In other cases a race, instead of imitating a distinct species, resembles some other race; thus, certain runts tremble and slightly elevate their tails, like fantails; and turbits inflate the upper part of their oesophagus, like pouter- pigeons.
It is a common circumstance to find certain coloured marks persistently characterising all the species of a genus, but differing much in tint; and the same thing occurs with the varieties of the pigeon: thus, instead of the general plumage being blue, with the wing-bars black, there are snow-white varieties with red bars, and black varieties with white bars; in other varieties the wing-bars, as we have seen, are elegantly zoned with different tints. The Spot pigeon is characterised by the whole plumage being white, excepting a spot on the forehead and the tail; but these parts may be red, yellow, or black. In the rock-pigeon and in many varieties the tail is blue, with the outer edges of the outer feathers white; but in the sub-variety of the monk-pigeon we have a reversed style of coloration, for the tail is white, except the outer edges of the outer feathers, which are black. (26/29. Bechstein 'Naturgeschichte Deutschlands' b. 4 1795 s. 31.)
With some species of birds, for instance with gulls, certain coloured parts appear as if almost washed out, and I have observed exactly the same appearance in the terminal dark tail-bar in certain pigeons, and in the whole plumage of certain varieties of the duck. Analogous facts in the vegetable kingdom could be given.
Many sub-varieties of the pigeon have reversed and somewhat lengthened feathers on the back part of their heads, and this is certainly not due to reversion to the parent-species, which shows no trace of such structure: but when we remember that sub-varieties of the fowl, turkey, canary-bird, duck, and goose, all have either topknots or reversed feathers on their heads; and when we remember that scarcely a single large natural group of birds can be named, in which some members have not a tuft of feathers on their heads, we may suspect that reversion to some extremely remote form has come into action.
Several breeds of the fowl have either spangled or pencilled feathers; and these cannot be derived from the parent-species, the Gallus bankiva; though of course it is possible that one early progenitor of this species may have been spangled, and another pencilled. But, as many gallinaceous birds are either spangled or pencilled, it is a more probable view that the several domestic breeds of the fowl have acquired this kind of plumage from all the members of the family inheriting a tendency to vary in a like manner. The same principle may account for the ewes in certain breeds of sheep being hornless, like the females of some other hollow-horned ruminants; it may account for certain domestic cats having slightly-tufted ears, like those of the lynx; and for the skulls of domestic rabbits often differing from one another in the same characters by which the skulls of the various species of the genus Lepus differ.
I will only allude to one other case, already discussed. Now that we know that the wild parent of the ass commonly has striped legs, we may feel confident that the occasional appearance of stripes on the legs of the domestic ass is due to reversion; but this will not account for the lower end of the shoulder- stripe being sometimes angularly bent or slightly forked. So, again, when we see dun and other coloured horses with stripes on the spine, shoulders, and legs, we are led, from reasons formerly given, to believe that they reappear through reversion to the wild parent-horse. But when horses have two or three shoulder-stripes, with one of them occasionally forked at the lower end, or when they have stripes on their faces, or are faintly striped as foals over nearly their whole bodies, with the stripes angularly bent one under the other on the forehead, or irregularly branched in other parts, it would be rash to attribute such diversified characters to the reappearance of those proper to the aboriginal wild horse. As three African species of the genus are much striped, and as we have seen that the crossing of the unstriped species often leads to the hybrid offspring being conspicuously striped — bearing also in mind that the act of crossing certainly causes the reappearance of long-lost characters — it is a more probable view that the above-specified stripes are due to reversion, not to the immediate wild parent-horse, but to the striped progenitor of the whole genus.]
I have discussed this subject of analogous variation at considerable length, because it is well known that the varieties of one species frequently resemble distinct species — a fact in perfect harmony with the foregoing cases, and explicable on the theory of descent. Secondly, because these facts are important from showing, as remarked in a former chapter, that each trifling variation is governed by law, and is determined in a much higher degree by the nature of the organisation, than by the nature of the conditions to which the varying being has been exposed. Thirdly, because these facts are to a certain extent related to a more general law, namely, that which Mr. B.D. Walsh (26/30. 'Proc. Entomolog. Soc. of Philadelphia' October 1863 page 213.) has called the "Law of EQUABLE VARIABILITY," or, as he explains it, "if any given character is very variable in one species of a group, it will tend to be variable in allied species; and if any given character is perfectly constant in one species of a group, it will tend to be constant in allied species."
This leads me to recall a discussion in the chapter on Selection, in which it was shown that with domestic races, which are now undergoing rapid improvement, those parts or characters vary the most, which are the most valued. This naturally follows from recently selected characters continually tending to revert to their former less improved standard, and from their being still acted on by the same agencies, whatever these may be, which first caused the characters in question to vary. The same principle is applicable to natural species, for, as stated in my 'Origin of Species' generic characters are less variable than specific characters; and the latter are those which have been modified by variation and natural selection, since the period when all the species belonging to the genus branched off from a common progenitor, whilst generic characters are those which have remained unaltered from a much more remote epoch, and accordingly are now less variable. This statement makes a near approach to Mr. Walsh's law of Equable Variability. Secondary sexual characters, it may be added, rarely serve to characterise distinct genera, for they usually differ much in the species of the same genus, and they are highly variable in the individuals of the same species; we have also seen in the earlier chapters of this work how variable secondary sexual characters become under domestication.
SUMMARY OF THE THREE PREVIOUS CHAPTERS ON THE LAWS OF VARIATION.
In the twenty-third chapter we saw that changed conditions occasionally, or even often, act in a definite manner on the organisation, so that all, or nearly all, the individuals thus exposed become modified in the same manner. But a far more frequent result of changed conditions, whether acting directly on the organisation or indirectly through the reproductive system, is indefinite and fluctuating variability. In the three last chapters, some of the laws by which such variability is regulated have been discussed.
Increased use adds to the size of muscles, together with the blood-vessels, nerves, ligaments, the crests of bone and the whole bones, to which they are attached. Increased functional activity increases the size of various glands, and strengthens the sense-organs. Increased and intermittent pressure thickens the epidermis. A change in the nature of the food sometimes modifies the coats of the stomach, and augments or decreases the length of the intestines. Continued disuse, on the other hand, weakens and diminishes all parts of the organisation. Animals which during many generations have taken but little exercise, have their lungs reduced in size, and as a consequence the bony fabric of the chest and the whole form of the body become modified. With our anciently domesticated birds, the wings have been little used, and they are slightly reduced; with their decrease, the crest of the sternum, the scapulae, coracoids, and furculum, have all been reduced.
With domesticated animals, the reduction of a part from disuse is never carried so far that a mere rudiment is left; whereas we have reason to believe that this has often occurred under nature; the effects of disuse in this latter case being aided by economy of growth, together with the intercrossing of many varying individuals. The cause of this difference between organisms in a state of nature, and under domestication, probably is that in the latter case there has not been time sufficient for any very great change, and that the principle of economy of growth does not come into action. On the contrary, structures which are rudimentary in the parent-species, sometimes become partially redeveloped in our domesticated productions. Such rudiments as occasionally make their appearance under domestication, seem always to be the result of a sudden arrest of development; nevertheless they are of interest, as showing that rudiments are the relics of organs once perfectly developed.
Corporeal, periodical, and mental habits, though the latter have been almost passed over in this work, become changed under domestication, and the changes are often inherited. Such changed habits in an organic being, especially when living a free life, would often lead to the augmented or diminished use of various organs, and consequently to their modification. From long-continued habit, and more especially from the occasional birth of individuals with a slightly different constitution, domestic animals and cultivated plants become to a certain extent acclimatised or adapted to a climate different from that proper to the parent-species.
Through the principle of correlated variability, taken in its widest sense, when one part varies other parts vary, either simultaneously, or one after the other. Thus, an organ modified during an early embryonic period affects other parts subsequently developed. When an organ, such as the beak, increases or decreases in length, adjoining or correlated parts, as the tongue and the orifice of the nostrils, tend to vary in the same manner. When the whole body increases or decreases in size, various parts become modified; thus, with pigeons the ribs increase or decrease in number and breadth. Homologous parts which are identical during their early development and are exposed to similar conditions, tend to vary in the same or in some connected manner, — as in the case of the right and left sides of the body, and of the front and hind limbs. So it is with the organs of sight and hearing; for instance, white cats with blue eyes are almost always deaf. There is a manifest relation throughout the body between the skin and various dermal appendages, such as hair, feathers, hoofs, horns, and teeth. In Paraguay, horses with curly hair have hoofs like those of a mule; the wool and the horns of sheep often vary together; hairless dogs are deficient in their teeth; men with redundant hair have abnormal teeth, either by deficiency or excess. Birds with long wing-feathers usually have long tail-feathers. When long feathers grow from the outside of the legs and toes of pigeons, the two outer toes are connected by membrane; for the whole leg tends to assume the structure of the wing. There is a manifest relation between a crest of feathers on the head and a marvellous amount of change in the skull of various fowls; and in a lesser degree, between the greatly elongated, lopping ears of rabbits and the structure of their skulls. With plants, the leaves, various parts of the flower, and the fruit, often vary together to a correlated manner.
In some cases we find correlation without being able even to conjecture what is the nature of the connection, as with various monstrosities and diseases. This is likewise the case with the colour of the adult pigeon, in connection with the presence of down on the young bird. Numerous curious instances have been given of peculiarities of constitution, in correlation with colour, as shown by the immunity of individuals of one colour from certain diseases, from the attacks of parasites and from the action of certain vegetable poisons.
Correlation is an important subject; for with species, and in a lesser degree with domestic races, we continually find that certain parts have been greatly modified to serve some useful purpose; but we almost invariably find that other parts have likewise been more or less modified, without our being able to discover any advantage in the change. No doubt great caution is necessary with respect to this latter point, for it is difficult to overrate our ignorance on the use of various parts of the organisation; but from what we have seen, we may believe that many modifications are of no direct service, having arisen in correlation with other and useful changes.
Homologous parts during their early development often become fused together. Multiple and homologous organs are especially liable to vary in number and probably in form. As the supply of organised matter is not unlimited, the principle of compensation sometimes comes into action; so that, when one part is greatly developed, adjoining parts are apt to be reduced; but this principle is probably of much less importance than the more general one of the economy of growth. Through mere mechanical pressure hard parts occasionally affect adjoining parts. With plants the position of the flowers on the axis, and of the seeds in the ovary, sometimes leads, through a more or less free flow of sap, to changes of structure; but such changes are often due to reversion. Modifications, in whatever manner caused, will be to a certain extent regulated by that co-ordinating power, or so-called nisus formativus, which is in fact a remnant of that simple form of reproduction, displayed by many lowly organised beings in their power of fissiparous generation and budding. Finally, the effects of the laws which directly or indirectly govern variability, may be largely regulated by man's selection, and will so far be determined by natural selection that changes advantageous to any race will be favoured, and disadvantageous changes will be checked.
Domestic races descended from the same species, or from two or more allied species, are liable to revert to characters derived from their common progenitor; and, as they inherit a somewhat similar constitution, they are liable to vary in the same manner. From these two causes analogous varieties often arise. When we reflect on the several foregoing laws, imperfectly as we understand them, and when we bear in mind how much remains to be discovered, we need not be surprised at the intricate and to us unintelligible manner in which our domestic productions have varied, and still go on varying.
CHAPTER 2.XXVII
PROVISIONAL HYPOTHESIS OF PANGENESIS.
PRELIMINARY REMARKS. FIRST PART: THE FACTS TO BE CONNECTED UNDER A SINGLE POINT OF VIEW, NAMELY, THE VARIOUS KINDS OF REPRODUCTION. REGROWTH OF AMPUTATED PARTS. GRAFT-HYBRIDS. THE DIRECT ACTION OF THE MALE ELEMENT ON THE FEMALE. DEVELOPMENT. THE FUNCTIONAL INDEPENDENCE OF THE UNITS OF THE BODY. VARIABILITY. INHERITANCE. REVERSION.
SECOND PART: STATEMENT OF THE HYPOTHESIS. HOW FAR THE NECESSARY ASSUMPTIONS ARE IMPROBABLE. EXPLANATION BY AID OF THE HYPOTHESIS OF THE SEVERAL CLASSES OF FACTS SPECIFIED IN THE FIRST PART. CONCLUSION.
In the previous chapters large classes of facts, such as those bearing on bud- variation, the various forms of inheritance, the causes and laws of variation, have been discussed; and it is obvious that these subjects, as well as the several modes of reproduction, stand in some sort of relation to one another. I have been led, or rather forced, to form a view which to a certain extent connects these facts by a tangible method. Every one would wish to explain to himself, even in an imperfect manner, how it is possible for a character possessed by some remote ancestor suddenly to reappear in the offspring; how the effects of increased or decreased use of a limb can be transmitted to the child; how the male sexual element can act not solely on the ovules, but occasionally on the mother-form; how a hybrid can be produced by the union of the cellular tissue of two plants independently of the organs of generation; how a limb can be reproduced on the exact line of amputation, with neither too much nor too little added; how the same organism may be produced by such widely different processes, as budding and true seminal generation; and, lastly, how of two allied forms, one passes in the course of its development through the most complex metamorphoses, and the other does not do so, though when mature both are alike in every detail of structure. I am aware that my view is merely a provisional hypothesis or speculation; but until a better one be advanced, it will serve to bring together a multitude of facts which are at present left disconnected by any efficient cause. As Whewell, the historian of the inductive sciences, remarks: — "Hypotheses may often be of service to science, when they involve a certain portion of incompleteness, and even of error." Under this point of view I venture to advance the hypothesis of Pangenesis, which implies that every separate part of the whole organisation reproduces itself. So that ovules, spermatozoa, and pollen-grains, — the fertilised egg or seed, as well as buds, — include and consist of a multitude of germs thrown off from each separate part or unit. (27/1. This hypothesis has been severely criticised by many writers, and it will be fair to give references to the more important articles. The best essay which I have seen is by Prof. Delpino, entitled 'Sulla Darwiniana Teoria della Pangenesi, 1869' of which a translation appeared in 'Scientific Opinion' September 29, 1869 and the succeeding numbers. He rejects the hypothesis, but criticises it fairly, and I have found his criticisms very useful. Mr. Mivart ('Genesis of Species' 1871 chapter 10.) follows Delpino, but adds no new objections of any weight. Dr. Bastian ('The Beginnings of Life' 1872 volume 2 page 98) says that the hypothesis "looks like a relic of the old rather than a fitting appanage of the new evolution philosophy." He shows that I ought not to have used the term "pangenesis," as it had been previously used by Dr. Gros in another sense. Dr. Lionel Beale ('Nature' May 11, 1871 page 26) sneers at the whole doctrine with much acerbity and some justice. Prof. Wigand ('Schriften der Gesell. der gesammt. Naturwissen. zu Marburg' b. 9 1870) considers the hypothesis as unscientific and worthless. Mr. G.H. Lewes ('Fortnightly Review' November 1, 1868 page 503) seems to consider that it may be useful: he makes many good criticisms in a perfectly fair spirit. Mr. F. Galton, after describing his valuable experiments ('Proc. Royal Soc.' volume 19 page 393) on the intertransfusion of the blood of distinct varieties of the rabbit, concludes by saying that in his opinion the results negative beyond all doubt the doctrine of Pangenesis. He informs me that subsequently to the publication of his paper he continued his experiments on a still larger scale for two more generations, without any sign of mongrelism showing itself in the very numerous offspring. I certainly should have expected that gemmules would have been present in the blood, but this is no necessary part of the hypothesis, which manifestly applies to plants and the lowest animals. Mr. Galton, in a letter to 'Nature' (April 27, 1871 page 502), also criticises various incorrect expressions used by me. On the other hand, several writers have spoken favourably of the hypothesis, but there would be no use in giving references to their articles. I may, however, refer to Dr. Ross' work, 'The Graft Theory of Disease; being an application of Mr. Darwin's hypothesis of Pangenesis' 1872 as he gives several original and ingenious discussions.)
In the First Part I will enumerate as briefly as I can the groups of facts which seem to demand connection; but certain subjects, not hitherto discussed, must be treated at disproportionate length. In the Second Part the hypothesis will be given; and after considering how far the necessary assumptions are in themselves improbable, we shall see whether it serves to bring under a single point of view the various facts.
PART I.
Reproduction may be divided into two main classes, namely, sexual and asexual. The latter is effected in many ways — by the formation of buds of various kinds, and by fissiparous generation, that is by spontaneous or artificial division. It is notorious that some of the lower animals, when cut into many pieces, reproduce so many perfect individuals: Lyonnet cut a Nais or freshwater worm into nearly forty pieces, and these all reproduced perfect animals. (27/2. Quoted by Paget 'Lectures on Pathology' 1853 page 159.) It is probable that segmentation could be carried much further in some of the protozoa; and with some of the lowest plants each cell will reproduce the parent-form. Johannes Muller thought that there was an important distinction between gemmation and fission; for in the latter case the divided portion, however small, is more fully developed than a bud, which also is a younger formation; but most physiologists are now convinced that the two processes are essentially alike. (27/3. Dr. Lachmann also observes ('Annals and Mag. of Nat. History' 2nd series volume 19 1857 page 231) with respect to infusoria, that "fissation and gemmation pass into each other almost imperceptibly." Again, Mr. W.C. Minor ('Annals and Mag. of Nat. Hist.' 3rd series volume 11 page 328) shows that with Annelids the distinction that has been made between fission and budding is not a fundamental one. See also Professor Clark's work 'Mind in Nature' New York 1865 pages 62, 94.) Prof. Huxley remarks, "fission is little more than a peculiar mode of budding," and Prof. H.J. Clark shows in detail that there is sometimes "a compromise between self-division and budding." When a limb is amputated, or when the whole body is bisected, the cut extremities are said to bud forth (27/4. See Bonnet 'Oeuvres d'Hist. Nat.' tome 5 1781 page 339 for remarks on the budding-out of the amputated limbs of Salamanders.); and as the papilla, which is first formed, consists of undeveloped cellular tissue like that forming an ordinary bud, the expression is apparently correct. We see the connection of the two processes in another way; for Trembley observed with the hydra, that the reproduction of the head after amputation was checked as soon as the animal put forth reproductive gemmae. (27/5. Paget 'Lectures on Pathology' 1853 page 158.)
Between the production, by fissiparous generation, of two or more complete individuals, and the repair of even a very slight injury, there is so perfect a gradation, that it is impossible to doubt that the two processes are connected. As at each stage of growth an amputated part is replaced by one in the same state of development, we must also follow Sir J. Paget in admitting, "that the powers of development from the embryo, are identical with those exercised for the restoration from injuries: in other words, that the powers are the same by which perfection is first achieved, and by which, when lost, it is recovered." (27/6. Ibid pages 152, 164.) Finally, we may conclude that the several forms of budding, fissiparous generation, the repair of injuries, and development, are all essentially the results of one and the same power.
SEXUAL GENERATION.
The union of the two sexual elements seems at first sight to make a broad distinction between sexual and asexual generation. But the conjugation of algae, by which process the contents of two cells unite into a single mass capable of development, apparently gives us the first step towards sexual union: and Pringsheim, in his memoir on the pairing of Zoospores (27/7. Translated in 'Annals and Mag. of Nat. Hist.' April 1870 page 272.), shows that conjugation graduates into true sexual reproduction. Moreover, the now well-ascertained cases of Parthenogenesis prove that the distinction between sexual and asexual generation is not nearly so great as was formerly thought; for ova occasionally, and even in some cases frequently, become developed into perfect beings, without the concourse of the male. With most of the lower animals and even with mammals, the ova show a trace of parthenogenetic power, for without being fertilised they pass through the first stages of segmentation. (27/8. Bischoff as quoted by von Siebold "Ueber Parthenogenesis" 'Sitzung der math. phys. Classe.' Munich November 4, 1871 page 240. See also Quatrefages 'Annales des Sc. Nat. Zoolog.' 3rd series 1850 page 138.) Nor can pseudova which do not need fertilisation, be distinguished from true ova, as was first shown by Sir J. Lubbock, and is now admitted by Siebold. So, again, the germ-balls in the larvae of Cecidomyia are said by Leuckart (27/9. 'On the Asexual Reproduction of Cecidomyide Larvae' translated in 'Annals and Mag. of Nat. Hist.' March 1866 pages 167, 171.) to be formed within the ovarium, but they do not require to be fertilised. It should also be observed that in sexual generation, the ovules and the male element have equal power of transmitting every single character possessed by either parent to their offspring. We see this clearly when hybrids are paired inter se, for the characters of both grandparents often appear in the progeny, either perfectly or by segments. It is an error to suppose that the male transmits certain characters and the female other characters; although no doubt, from unknown causes, one sex sometimes has a much stronger power of transmission than the other.
It has, however, been maintained by some authors that a bud differs essentially from a fertilised germ, in always reproducing the perfect character of the parent-stock; whilst fertilised germs give birth to variable beings. But there is no such broad distinction as this. In the eleventh chapter numerous cases were advanced showing that buds occasionally grow into plants having quite new characters; and the varieties thus produced can be propagated for a length of time by buds, and occasionally by seed. Nevertheless, it must be admitted that beings produced sexually are much more liable to vary than those produced asexually; and of this fact a partial explanation will hereafter be attempted. The variability in both cases is determined by the same general causes, and is governed by the same laws. Hence new varieties arising from buds cannot be distinguished from those arising from seed. Although bud-varieties usually retain their character during successive bud-generations, yet they occasionally revert, even after a long series of bud-generations, to their former character. This tendency to reversion in buds, is one of the most remarkable of the several points of agreement between the offspring from bud and seminal reproduction.
But there is one difference between organisms produced sexually and asexually, which is very general. The former pass in the course of their development from a very low stage to their highest stage, as we see in the metamorphoses of insects and of many other animals, and in the concealed metamorphoses of the vertebrata. Animals propagated asexually by buds or fission, on the other hand, commence their development at that stage at which the budding or self- dividing animal may happen to be, and therefore do not pass through some of the lower developmental stages. (27/10. Prof. Allman speaks ('Transact. R. Soc. of Edinburgh' volume 26 1870 page 102) decisively on this head with respect to the Hydroida: he says, "It is a universal law in the succession of zooids, that no retrogression ever takes place in the series.") Afterwards, they often advance in organisation, as we see in the many cases of "alternate generation." In thus speaking of alternate generation, I follow those naturalists who look at this process as essentially one of internal budding or of fissiparous generation. Some of the lower plants, however, such as mosses and certain algae, according to Dr. L. Radlkofer (27/11. 'Annals and Mag. of Nat. Hist.' 2nd series volume 20 1857 pages 153-455), when propagated asexually, do undergo a retrogressive metamorphosis. As far as the final cause is concerned, we can to a certain extent understand why beings propagated by buds should not pass through all the early stages of development; for with each organism the structure acquired at each stage must be adapted to its peculiar habits; and if there are places for the support of many individuals at some one stage, the simplest plan will be that they should be multiplied at this stage, and not that they should first retrograde in their development to an earlier or simpler structure, which might not be fitted for the then surrounding conditions.
From the several foregoing considerations we may conclude that the difference between sexual and asexual generation is not nearly so great as at first appears; the chief difference being that an ovule cannot continue to live and to be fully developed unless it unites with the male element; but even this difference is far from invariable, as shown by the many cases of parthenogenesis. We are therefore naturally led to inquire what the final cause can be of the necessity in ordinary generation for the concourse of the two sexual elements.
Seeds and ova are often highly serviceable as the means of disseminating plants and animals, and of preserving them during one or more seasons in a dormant state; but unimpregnated seeds or ova, and detached buds, would be equally serviceable for both purposes. We can, however, indicate two important advantages gained by the concourse of the two sexes, or rather of two individuals belonging to opposite sexes; for, as I have shown in a former chapter, the structure of every organism appears to be especially adapted for the concurrence, at least occasionally, of two individuals. When species are rendered highly variable by changed conditions of life, the free intercrossing of the varying individuals tends to keep each form fitted for its proper place in nature; and crossing can be effected only by sexual generation; but whether the end thus gained is of sufficient importance to account for the first origin of sexual intercourse is extremely doubtful. Secondly, I have shown from a large body of facts, that, as a slight change in the conditions of life is beneficial to each creature, so, in an analogous manner, is the change effected in the germ by sexual union with a distinct individual; and I have been led, from observing the many widely-extended provisions throughout nature for this purpose, and from the greater vigour of crossed organisms of all kinds, as proved by direct experiments, as well as from the evil effects of close interbreeding when long continued, to believe that the advantage thus gained is very great.
Why the germ, which before impregnation undergoes a certain amount of development, ceases to progress and perishes, unless it be acted on by the male element; and why conversely the male element, which in the case of some insects is enabled to keep alive for four or five years, and in the case of some plants for several years, likewise perishes, unless it acts on or unites with the germ, are questions which cannot be answered with certainty. It is, however, probable that both sexual elements perish, unless brought into union, simply from including too little formative matter for independent development. Quatrefages has shown in the case of the Teredo (27/12. 'Annales des Sc. Nat.' 3rd series 1850 tome 13.), as did formerly Prevost and Dumas with other animals, that more than one spermatozoon is requisite to fertilise an ovum. This has likewise been shown by Newport (27/13. 'Transact. Phil. Soc.' 1851 pages 196, 208, 210; 1853 pages 245, 247.), who proved by numerous experiments, that, when a very small number of spermatozoa are applied to the ova of Batrachians, they are only partially impregnated, and an embryo is never fully developed. The rate also of the segmentation of the ovum is determined by the number of the spermatozoa. With respect to plants, nearly the same results were obtained by Kolreuter and Gartner. This last careful observer, after making successive trials on a Malva with more and more pollen- grains, found (27/14. 'Beitrage zur Kenntniss' etc. 1844 s. 345.), that even thirty grains did not fertilise a single seed; but when forty grains were applied to the stigma, a few seeds of small size were formed. In the case of Mirabilis the pollen grains are extraordinarily large, and the ovarium contains only a single ovule; and these circumstances led Naudin (27/15. 'Nouvelles Archives du Museum' tome 1 page 27.) to make the following experiments: a flower was fertilised by three grains and succeeded perfectly; twelve flowers were fertilised by two grains, and seventeen flowers by a single grain, and of these one flower alone in each lot perfected its seed: and it deserves especial notice that the plants produced by these two seeds never attained their proper dimensions, and bore flowers of remarkably small size. From these facts we clearly see that the quantity of the peculiar formative matter which is contained within the spermatozoa and pollen-grains is an all-important element in the act of fertilisation, not only for the full development of the seed, but for the vigour of the plant produced from such seed. We see something of the same kind in certain cases of parthenogenesis, that is, when the male element is wholly excluded; for M. Jourdan (27/16. As quoted by Sir J. Lubbock in 'Nat. Hist. Review' 1862 page 345. Weijenbergh also raised ('Nature' December 21, 1871 page 149) two successive generations from unimpregnated females of another lepidopterous insect, Liparis dispar. These females did not produce at most one-twentieth of their full complement of eggs, and many of the eggs were worthless. Moreover the caterpillars raised from these unfertilised eggs "possessed far less vitality" than those from fertilised eggs. In the third parthenogenetic generation not a single egg yielded a caterpillar.) found that, out of about 58,000 eggs laid by unimpregnated silk-moths, many passed through their early embryonic stages, showing that they were capable of self-development, but only twenty-nine out of the whole number produced caterpillars. The same principle of quantity seems to hold good even in artificial fissiparous reproduction, for Hackel (27/17. 'Entwickelungsgeschichte der Siphonophora' 1869 page 73.) found that by cutting the segmented and fertilised ova or larva of Siphonophorae (jelly- fishes) into pieces, the smaller the pieces were, the slower was the rate of development, and the larvae thus produced were by so much the more imperfect and inclined to monstrosity. It seems, therefore, probable that with the separate sexual elements deficient quantity of formative matter is the main cause of their not having the capacity for prolonged existence and development, unless they combine and thus increase each other's bulk. The belief that it is the function of the spermatozoa to communicate life to the ovule seems a strange one, seeing that the unimpregnated ovule is already alive and generally undergoes a certain amount of independent development. Sexual and asexual reproduction are thus seen not to differ essentially; and we have already shown that asexual reproduction, the power of regrowth and development are all parts of one and the same great law.
REGROWTH OF AMPUTATED PARTS.
This subject deserves a little further discussion. A multitude of the lower animals and some vertebrates possess this wonderful power. For instance, Spallanzani cut off the legs and tail of the same salamander six times successively, and Bonnet (27/18. Spallanzani 'An Essay on Animal Reproduction' translated by Dr. Maty 1769 page 79. Bonnet 'Oeuvres d'Hist. Nat.' tome 5 part 1 4to. edition 1781 pages 343, 350.) did so eight times; and on each occasion the limbs were reproduced on the exact line of amputation, with no part deficient or in excess. An allied animal, the axolotl, had a limb bitten off, which was reproduced in an abnormal condition, but when this was amputated it was replaced by a perfect limb. (27/19. Vulpian as quoted by Prof. Faivre 'La Variabilite des Especes' 1868 page 112.) The new limbs in these cases bud forth, and are developed in the same manner as during the regular development of a young animal. For instance, with the Amblystoma lurida, three toes are first developed, then the fourth, and on the hind-feet the fifth, and so it is with a reproduced limb. (27/20. Dr. P. Hoy 'The American Naturalist' September 1871 page 579.)
The power of regrowth is generally much greater during the youth of an animal or during the earlier stages of its development than during maturity. The larvae or tadpoles of the Batrachians are capable of reproducing lost members, but not so the adults. (27/21. Dr. Gunther in Owen 'Anatomy of Vertebrates' volume 1 1866 page 567. Spallanzani has made similar observations.) Mature insects have no power of regrowth, excepting in one order, whilst the larvae of many kinds have this power. Animals low in the scale are able, as a general rule, to reproduce lost parts far more easily than those which are more highly organised. The myriapods offer a good illustration of this rule; but there are some strange exceptions to it — thus Nemerteans, though lowly organised, are said to exhibit little power of regrowth. With the higher vertebrata, such as birds and mammals, the power is extremely limited. (27/22. A thrush was exhibited before the British Association at Hull in 1853 which had lost its tarsus, and this member, it was asserted, had been thrice reproduced; having been lost, I presume, each time by disease. Sir J. Paget informs me that he feels some doubt about the facts recorded by Sir J. Simpson ('Monthly Journal of Medical Science' Edinburgh 1848 new series volume 2 page 890) of the regrowth of limbs in the womb in the case of man.)
In the case of those animals which may be bisected or chopped into pieces, and of which every fragment will reproduce the whole, the power of regrowth must be diffused throughout the whole body. Nevertheless there seems to be much truth in the view maintained by Prof. Lessona (27/23. 'Atti della Soc. Ital. di Sc. Nat.' volume 11 1869 page 493.), that this capacity is generally a localised and special one, serving to replace parts which are eminently liable to be lost in each particular animal. The most striking case in favour of this view, is that the terrestrial salamander, according to Lessona, cannot reproduce lost parts, whilst another species of the same genus, the aquatic salamander, has extraordinary powers of regrowth, as we have just seen; and this animal is eminently liable to have its limbs, tail, eyes and jaws bitten off by other tritons. (27/24. Lessona states that this is so in the paper just referred to. See also 'The American Naturalist' September 1871 page 579.) Even with the aquatic salamander the capacity is to a certain extent localised, for when M. Philipeaux (27/25. 'Comptes Rendus' October 1, 1866 and June 1867.) extirpated the entire fore limb together with the scapula, the power of regrowth was completely lost. It is also a remarkable fact, standing in opposition to a very general rule, that the young of the aquatic salamander do not possess the power of repairing their limbs in an equal degree with the adults (27/26. Bonnet 'Oeuvres Hist. Nat.' volume 5 page 294, as quoted by Prof. Rolleston in his remarkable address to the 36th annual meeting of the British Medical Association.) but I do not know that they are more active, or can otherwise better escape the loss of their limbs, than the adults. The walking-stick insect, Diapheromera femorata, like other insects of the same order, can reproduce its legs in the mature state, and these from their great length must be liable to be lost: but the capacity is localised (as in the case of the salamander), for Dr. Scudder found (27/27. 'Proc. Boston Soc. of Nat. Hist.' volume 12 1868-69 page 1.), that if the limb was removed within the trochanto-femoral articulation, it was never renewed. When a crab is seized by one of its legs, this is thrown off at the basal joint, being afterwards replaced by a new leg; and it is generally admitted that this is a special provision for the safety of the animal. Lastly, with gasteropod molluscs, which are well known to have the power of reproducing their heads, Lessona shows that they are very liable to have their heads bitten off by fishes; the rest of the body being protected by the shell. Even with plants we see something of the same kind, for non-deciduous leaves and young stems have no power of regrowth, these parts being easily replaced by growth from new buds; whilst the bark and subjacent tissues of the trunks of trees have great power of regrowth, probably on account of their increase in diameter, and of their liability to injury from being gnawed by animals.
GRAFT-HYBRIDS.