⁄
,
⁄
, and 6/11, still afford traces of Jupiter's influence. The first is in the interval between Augusta and Feronia; the last falls in the same gap with 3.277; and the second and third are in breaks less distinctly marked. It may also be worthy of notice that the rather wide interval between Prymno and Victoria is where ten periods of a minor planet would be equal to three of Jupiter. The distance of Medusa is somewhat uncertain.
The fact of the existence of well-defined gaps in the designated parts of the ring has been clearly established. But the theory of probability applied in a single instance gives, as we have seen, but one chance in 300,000,000,000 that the distribution is accidental. This improbability is increased many millions of times when we include all the gaps corresponding to simple cases of commensurability. We conclude, therefore, that those discontinuities cannot be referred to a chance arrangement. What, then, was their physical cause? and what has become of the eliminated asteroids?
What was said in regard to the limits of perihelion distance may suggest a possible answer to these interesting questions. The doctrine of the sun's gradual contraction is now accepted by a majority of astronomers. According to this theory the solar radius at an epoch not relatively remote was twice what it is at present. At anterior stages it was 0.4, 1.0, 2.0,[11 - The unit being the sun's distance from the earth.] etc. At the first mentioned the comets of 1843 and 1668, as well as several others, could not have been moving in their present orbits, since in perihelion they must have plunged into the sun. At the second, Encke's comet and all others with perihelia within Mercury's orbit would have shared a similar fate. At the last named all asteroids with perihelion distances less than two would have been re-incorporated with the central mass. As the least distance of Æthra is but 1.587, its orbit could not have had its present form and dimensions when the radius of the solar nebula was equal to the aphelion distance of Mars (1.665).
It is easy to see, therefore, that in those parts of the ring where Jupiter would produce extraordinary disturbance the formation of chasms would be very highly probable.
5. Relations between certain Adjacent Orbits
The distances, periods, inclinations, and eccentricities of Hilda and Ismene, the outermost pair of the group, are very nearly identical. It is a remarkable fact, however, that the longitudes of their perihelia differ by almost exactly 180°. Did they separate at nearly the same time from opposite sides of the solar nebula? Other adjacent pairs having a striking similarity between their orbital elements are Sirona and Ceres, Fides and Maia, Fortuna and Eurynome, and perhaps a few others. Such coincidences can hardly be accidental. Original asteroids, soon after their detachment from the central body, may have been separated by the sun's unequal attraction on their parts. Such divisions have occurred in the world of comets, why not also in the cluster of minor planets?
6. The Eccentricities
The least eccentric orbit in the group is that of Philomela (196); the most eccentric that of Æthra (132). Comparing these with the orbit of the second comet of 1867 we have
The orbit of Æthra, it is seen, more nearly resembles the last than the first. It might perhaps be called the connecting-link between planetary and cometary orbits.
The average eccentricity of the two hundred and sixty-eight asteroids whose orbits have been calculated is 0.1569. As with the orbits of the old planets, the eccentricities vary within moderate limits, some increasing, others diminishing. The average, however, will probably remain very nearly the same. An inspection of the table shows that while but one orbit is less eccentric than the earth's, sixty-nine depart more from the circular form than the orbit of Mercury. These eccentricities seem to indicate that the forms of the asteroidal orbits were influenced by special causes. It may be worthy of remark that the eccentricity does not appear to vary with the distance from the sun, being nearly the same for the interior members of the zone as for the exterior.
7. The Inclinations
The inclinations in Table II. are thus distributed:
One hundred and fifty-four, considerably more than half, have inclinations between 3° and 11°, and the mean of the whole number is about 8°,—slightly greater than the inclination of Mercury, or that of the plane of the sun's equator. The smallest inclination, that of Massalia, is 0° 41´, and the largest, that of Pallas, is about 35°. Sixteen minor planets, or six per cent. of the whole number, have inclinations exceeding 20°. Does any relation obtain between high inclinations and great eccentricities? These elements in the cases named above are as follows:
This comparison shows the most inclined orbits to be also very eccentric; Bertha and Eunice being the only exceptions in the foregoing list. On the other hand, however, we find over fifty asteroids with eccentricities exceeding 0.20 whose inclinations are not extraordinary. The dependence of the phenomena on a common cause can, therefore, hardly be admitted. At least, the forces which produced the great eccentricity failed in a majority of cases to cause high inclinations.
8. Longitudes of the Perihelia
The perihelia of the asteroidal orbits are very unequally distributed; one hundred and thirty-six—a majority of the whole number determined—being within the 120° from longitude 290° 50´ to 59° 50´. The maximum occurs between 30° and 60°, where thirty-five perihelia are found in 30° of longitude.
9. Distribution of the Ascending Nodes
An inspection of the column containing the longitudes of the ascending nodes, in Table II., indicates two well-marked maxima, each extending about sixty degrees, in opposite parts of the heavens.
A uniform distribution would give 89. An arc of 84°—from 46° to 130°—contains the ascending nodes of all the old planets. This arc, it will be noticed, is not coincident with either of the maxima found for the asteroids.
10. The Periods
Since, according to Kepler's third law, the periods of planets depend upon their mean distances, the clustering tendency found in the latter must obtain also in the former. This marked irregularity in the order of periods is seen below.
The period of Hilda (153) is more than two and a half times that of Medusa (149). This is greater than the ratio of Saturn's period to that of Jupiter. The maximum observed between 2000 and 2100 days corresponds to the space immediately interior to chasm I. on a previous page, that between 1300 and 1400 to the space interior to the second, and that between 1500 and 1700 to the part of the zone within the fourth gap. The table presents quite numerous instances of approximate equality; in forty-three cases the periods differing less than twenty-four hours. It is impossible to say, however, whether any two of these periods are exactly equal. In cases of a very close approach two asteroids, notwithstanding their small mass, may exert upon each other quite sensible perturbations.
11. Origin of the Asteroids
But four minor planets had been discovered when Laplace issued his last edition of the "Système du Monde." The author, in his celebrated seventh note in the second volume of that work, explained the origin of these bodies by assuming that the primitive ring from which they were formed, instead of collecting into a single sphere, as in the case of the major planets, broke up into four distinct masses. But the form and extent of the cluster as now known, as well as the observed facts bearing on the constitution of Saturn's ring, seem to require a modification of Laplace's theory. Throughout the greater part of the interval between Mars and Jupiter an almost continuous succession of small planetary masses—not nebulous rings—appears to have been abandoned at the solar equator. The entire cluster, distributed throughout a space whose outer radius exceeds the inner by more than two hundred millions of miles, could not have originated, as supposed by Laplace, in a single nebulous zone the different parts of which revolved with the same angular velocity. The following considerations may furnish a suggestion in regard to the mode in which these bodies were separated from the equator of the solar nebula.
(a) The perihelion distance of Jupiter is 4.950, while the aphelion distance of Hilda is 4.623. If, therefore, the sun once extended to the latter, the central attraction of its mass on an equatorial particle was but five times greater than Jupiter's perihelion influence on the same. It is easy to see, then, that this "giant planet" would produce enormous tidal elevations in the solar mass.
(b) The centrifugal force would be greatest at the crest of this tidal wave.
(c) Three periods of solar revolution were then about equal to two periods of Jupiter. The disturbing influence of the planet would therefore be increased at each conjunction with this protuberance. The ultimate separation (not of a ring but) of a planetary mass would be the probable result of these combined and accumulating forces.
12. Variability of Certain Asteroids
Observations of some minor planets have indicated a variation of their apparent magnitudes. Frigga, discovered by Dr. Peters in 1862, was observed at the next opposition in 1864; but after this it could not be found till 1868, when it was picked up by Professor Tietjen. From the latter date its light seems again to have diminished, as all efforts to re-observe it were unsuccessful till 1879. According to Dr. Peters, the change in brightness during the period of observation in that year was greater than that due to its varying distance. No explanation of such changes has yet been offered. It has been justly remarked, however, that "the length of the period of the fluctuation does not allow of our connecting it with the rotation of the planet."
13. The Average Asteroid Orbit
At the meeting of the American Association for the Advancement of Science in 1884, Professor Mark W. Harrington, of Ann Arbor, Michigan, presented a paper in which the elements of the asteroid system were considered on the principle of averages. Two hundred and thirty orbits, all that had then been determined, were employed in the discussion. Professor Harrington supposes two planes to intersect the ecliptic at right angles; one passing through the equinoxes and the other through the solstices. These planes will intersect the asteroidal orbits, each in four points, and "the mean intersection at each solstice and equinox may be considered a point in the average orbit."
In 1883 the Royal Academy of Denmark offered its gold medal for a statistical examination of the orbits of the small planets considered as parts of a ring around the sun. The prize was awarded in 1885 to M. Svedstrup, of Copenhagen. The results obtained by these astronomers severally are as follows:
These elements, with the exception of the first, are in reasonable harmony.
14. The Relation of Short-Period Comets to the Zone of Asteroids
Did comets originate within the solar system, or do they enter it from without? Laplace assigned them an extraneous origin, and his view is adopted by many eminent astronomers. With all due respect to the authority of great names, the present writer has not wholly abandoned the theory that some comets of short period are specially related to the minor planets. According to M. Lehmann-Filhès, the eccentricity of the third comet of 1884, before its last close approach to Jupiter, was only 0.2787.[12 - Annuaire, 1886.] This is exceeded by that of twelve known minor planets. Its mean distance before this great perturbation was about 4.61, and six of its periods were nearly equal to five of Jupiter's,—a commensurability of the first order. According to Hind and Krueger, the great transformation of its orbit by Jupiter's influence occurred in May, 1875. It had previously been an asteroid too remote to be seen even in perihelion. This body was discovered by M. Wolf, at Heidelberg, September 17, 1884. Its present period is about six and one-half years.
The perihelion distance of the comet 1867 II. at its return in 1885 was 2.073; its aphelion is 4.897; so that its entire path, like those of the asteroids, is included between the orbits of Mars and Jupiter. Its eccentricity, as we have seen, is little greater than that of Æthra, and its period, inclination, and longitude of the ascending node are approximately the same with those of Sylvia, the eighty-seventh minor planet. In short, this comet may be regarded as an asteroid whose elements have been considerably modified by perturbation.
It has been stated that the gap at the distance 3.277 is the only one corresponding to the first order of commensurability. The distance 3.9683, where an asteroid's period would be two-thirds of Jupiter's, is immediately beyond the outer limit of the cluster as at present known; the mean distance of Hilda being 3.9523. The discovery of new members beyond this limit is by no means improbable. Should a minor planet at the mean distance 3.9683 attain an eccentricity of 0.3—and this is less than that of eleven now known—its aphelion would be more remote than the perihelion of Jupiter. Such an orbit might not be stable. Its form and extent might be greatly changed after the manner of Lexell's comet. Two well-known comets, Faye's and Denning's, have periods approximately equal to two-thirds of Jupiter's. In like manner the periods of D'Arrest's and Biela's comets correspond to the hiatus at 3.51, and that of 1867 II. to that at 3.277.
Of the thirteen telescopic comets whose periods correspond to mean distances within the asteroid zone, all have direct motion; all have inclinations similar to those of the minor planets; and their eccentricities are generally less than those of other known comets. Have these facts any significance in regard to their origin?
APPENDIX
NOTE A
THE POSSIBLE EXISTENCE OF ASTEROIDS IN UNDISCOVERED RINGS
If Jupiter's influence was a factor in the separation of planetules at the sun's equator, may not similar clusters exist in other parts of our system? The hypothesis is certainly by no means improbable. For anything we know to the contrary a group may circulate between Jupiter and Saturn; such bodies, however, could not be discovered—at least not by ordinary telescopes—on account of their distance. The Zodiacal Light, it has been suggested, may be produced by a cloud of indefinitely small particles related to the planets between the sun and Mars. The rings of Saturn are merely a dense asteroidal cluster; and, finally, the phenomena of luminous meteors indicate the existence of small masses of matter moving with different velocities in interstellar space.
NOTE B
THE ORIGIN AND STRUCTURE OF COSMICAL RINGS
The general theory of cosmical rings and of their arrangement in sections or clusters with intervening chasms may be briefly stated in the following propositions:
I
Whenever the separating force of a primary body on a secondary or satellite is greater than the central attraction of the latter on its superficial stratum, the satellite, if either gaseous or liquid, will be transformed into a ring.