Оценить:
 Рейтинг: 0

Lifespan

Автор
Год написания книги
2019
<< 1 2 3 4 5 6 7 ... 13 >>
На страницу:
3 из 13
Настройки чтения
Размер шрифта
Высота строк
Поля
And yes, I fully recognize the implications of the words “bringing an end to aging as we know it,” so, in part III (#litres_trial_promo), I will acknowledge the many possible futures these actions could create and propose a path to a future that we can look forward to, a world in which the way we can get to an increased lifespan is through an ever-rising healthspan, the portion of our lives spent without disease or disability.

There are plenty of people who will tell you that’s a fairy tale—closer to the works of H. G. Wells than those of C. R. Darwin. Some of them are very smart. A few are even people who understand human biology quite well and whom I respect.

Those people will tell you that our modern lifestyles have cursed us with shortening lifespans. They’ll say you’re unlikely to see 100 years of age and that your children aren’t likely to get to the century mark, either. They’ll say they’ve looked at the science of it all and done the projections, and it sure doesn’t seem likely that your grandchildren will get to their 100th birthdays, either. And they’ll say that if you do get to 100, you probably won’t get there healthy and you definitely won’t be there for long. And if they grant you that people will live longer, they’ll tell you that it’s the worst thing for this planet. Humans are the enemy!

They’ve got good evidence for all of this—the entire history of humanity, in fact.

Sure, little by little, millennia by millennia, we’ve been adding years to the average human life, they will say. Most of us didn’t get to 40, and then we did. Most of us didn’t get to 50, and then we did. Most of us didn’t get to 60, and then we did.[12 - According to the Creation Wiki: the Encyclopedia of Creation Science (a website of the Northwest Creation Network, http://creationwiki.org/Human_longevity), in Genesis, most of us once got to 900 years, then we didn’t. Then most of us got to 400, then we didn’t. Then most of us got to 120, then we didn’t. In more recent times, as Oeppen and Vaupel have written, “Mortality experts have repeatedly asserted that life expectancy is close to an ultimate ceiling; these experts have repeatedly been proven wrong. The apparent leveling off of life expectancy in various countries is an artifact of laggards catching up and leaders falling behind.” J. Oeppen and J. W. Vaupel, “Broken Limits to Life Expectancy,” Science 296, no. 5570 (May 10, 2002): 1029–31.] By and large, these increases in life expectancy came as more of us gained access to stable food sources and clean water. And largely the average was pushed upward from the bottom; deaths during infancy and childhood fell, and life expectancy rose. This is the simple math of human mortality.

But although the average kept moving up, the limit did not. As long as we’ve been recording history, we have known of people who have reached their 100th year and who might have lived a few years beyond that mark. But very few reach 110. Almost no one reaches 115.

Our planet has been home to more than 100 billion humans so far. We know of just one, Jeanne Calment of France, who ostensibly lived past the age of 120. Most scientists believe she died in 1997 at the age of 122, although it’s also possible that her daughter replaced her to avoid paying taxes.[13 - There is some debate as to what constitutes verifiable age. There are humans who have claimed, and provided considerable evidence, of being of great age, but who don’t have formal Western-style records of their year of birth. In any case, these people are one in a billion, if that. In November 2018, the Russian gerontologist Valery Novoselov and the mathematician Nikolay Zak claimed that after much research, they believe that Jeanne Calment’s daughter, Yvonne, usurped Jeanne’s identity in 1934, claiming that the daughter had died instead of the mother to avoid paying estate taxes. The debate continues. “French Scientists Dismiss Russian Claims over Age of World’s Oldest Person,” Reuters, January 3, 2019, https://www.reuters.com/article/us-france-oldest-woman-controversy/french-scientists-dismiss-russian-claims-over-age-of-worlds-oldest-person-idUSKCN1OX145.] Whether or not she actually made it to that age really doesn’t matter; others have come within a few years of that age but most of us, 99.98 percent to be precise, are dead before 100.

So it certainly makes sense when people say that we might continue to chip away at the average, but we’re not likely to move the limit. They say it’s easy to extend the maximum lifespan of mice or of dogs, but we humans are different. We simply live too long already.

They are wrong.

There’s also a difference between extending life and prolonging vitality. We’re capable of both, but simply keeping people alive—decades after their lives have become defined by pain, disease, frailty, and immobility—is no virtue.

Prolonged vitality—meaning not just more years of life but more active, healthy, and happy ones—is coming. It is coming sooner than most people expect. By the time the children who are born today have reached middle age, Jeanne Calment may not even be on the list of the top 100 oldest people of all time. And by the turn of the next century, a person who is 122 on the day of his or her death may be said to have lived a full, though not particularly long, life. One hundred and twenty years might be not an outlier but an expectation, so much so that we won’t even call it longevity; we will simply call it “life,” and we will look back with sadness on the time in our history in which it was not so.

What’s the upward limit? I don’t think there is one. Many of my colleagues agree.[14 - Italian researchers found after studying 4,000 elderly people that if you make it to age 105, the risk of death effectively plateaus from one birthday to the next, the odds of dying in the next year becoming approximately fifty-fifty. E. Barbi, F. Lagona, M. Marsili, et al., “The Plateau of Human Mortality: Demography of Longevity Pioneers,” Science 360, no. 396 (June 29, 2018): 1459–61, http://science.sciencemag.org/content/360/6396/1459.] There is no biological law that says we must age.[15 - “If people live on average to 80 or 90, like they do now, then the very long lived make it to 110 or 120,” says Siegfried Hekimi, professor of genetics at McGill University in Canada. “So if the average lifespan keeps expanding, that would mean the long-lived would live even longer, beyond 115 years”; A. Park, “There’s No Known Limit to How Long Humans Can Live, Scientists Say,” Time, June 28, 2017, http://time.com/4835763/how-long-can-humans-live/.] Those who say there is don’t know what they’re talking about. We’re probably still a long way off from a world in which death is a rarity, but we’re not far from pushing it ever farther into the future.

All of this, in fact, is inevitable. Prolonged healthy lifespans are in sight. Yes, the entire history of humanity suggests otherwise. But the science of lifespan extension in this particular century says that the previous dead ends are poor guides.

It takes radical thinking to even begin to approach what this will mean for our species. Nothing in our billions of years of evolution has prepared us for this, which is why it’s so easy, and even alluring, to believe that it simply cannot be done.

But that’s what people thought about human flight, too—up until the moment someone did it.

Today the Wright brothers are back in their workshop, having successfully flown their gliders down the sand dunes of Kitty Hawk. The world is about to change.

And just as was the case in the days leading up to December 17, 1903, the majority of humanity is oblivious. There was simply no context with which to construct the idea of controlled, powered flight back then, so the idea was fanciful, magical, the stuff of speculative fiction.[16 - “Any sufficiently advanced technology is indistinguishable from magic.” “Arthur C. Clarke,” Wikiquote, https://en.wikiquote.org/wiki/Arthur_C._Clarke.]

Then: liftoff. And nothing was ever the same again.

We are at another point of historical inflection. What hitherto seemed magical will become real. It is a time in which humanity will redefine what is possible; a time of ending the inevitable.

Indeed, it is a time in which we will redefine what it means to be human, for this is not just the start of a revolution, it is the start of an evolution.

PART I

WHAT WE KNOW

(THE PAST)

ONE

VIVA PRIMORDIUM

IMAGINE A PLANET ABOUT THE SIZE OF OUR OWN, ABOUT AS FAR FROM ITS STAR, rotating around its axis a bit faster, such that a day lasts about twenty hours. It is covered with a shallow ocean of salty water and has no continents to speak of—just some sporadic chains of basaltic black islands peeking up above the waterline. Its atmosphere does not have the same mix of gases as ours. It is a humid, toxic blanket of nitrogen, methane, and carbon dioxide.

There is no oxygen. There is no life.

Because this planet, our planet as it was 4 billion years ago, is a ruthlessly unforgiving place. Hot and volcanic. Electric. Tumultuous.

But that is about to change. Water is pooling next to warm thermal vents that litter one of the larger islands. Organic molecules cover all surfaces, having ridden in on the backs of meteorites and comets. Sitting on dry, volcanic rock, these molecules will remain just molecules, but when dissolved in pools of warm water, through cycles of wetting and drying at the pools’ edges, a special chemistry takes place.[17 - D. Damer and D. Deamer, “Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life,” Life 5, no. 1 (2015): 872–87, https://www.mdpi.com/2075-1729/5/1/872.] As the nucleic acids concentrate, they grow into polymers, the way salt crystals form when a seaside puddle evaporates. These are the world’s first RNA molecules, the predecessors to DNA. When the pond refills, the primitive genetic material becomes encapsulated by fatty acids to form microscopic soap bubbles—the first cell membranes.[18 - According to precise radiological and geological readings and recent discoveries about the early chemistry of life, this is an accurate picture of how the inanimate was animated and life took hold. M. J. Van Kranendonk, D. W. Deamer, and T. Djokic, “Life on Earth Came from a Hot Volcanic Pool, Not the Sea, New Evidence Suggests,” Scientific American, August 2017, https://www.scientificamerican.com/article/life-on-earth-came-from-a-hot-volcanic-pool-not-the-sea-new-evidence-suggests/.]

It doesn’t take long, a week perhaps, before the shallow ponds are covered with a yellow froth of trillions of tiny precursor cells filled with short strands of nucleic acids, which today we call genes.

Most of the protocells are recycled, but some survive and begin to evolve primitive metabolic pathways, until finally the RNA begins to copy itself. That point marks the origin of life. Now that life has formed—as fatty-acid soap bubbles filled with genetic material—they begin to compete for dominance. There simply aren’t enough resources to go around. May the best scum win.

Day in and day out, the microscopic, fragile life-forms begin to evolve into more advanced forms, spreading into rivers and lakes.

Along comes a new threat: a prolonged dry season. The level of the scum-covered lakes has dropped by a few feet during the dry season, but the lakes have always filled up again as the rains returned. But this year, thanks to unusually intense volcanic activity on the other side of the planet, the annual rains don’t fall as they usually do and the clouds pass on by. The lakes dry up completely.

What remains is a thick, yellow crust covering the lake beds. It is an ecosystem defined not by the annual waxing and waning of the waters but by a brutal struggle for survival. And more than that: it is a fight for the future—because the organisms that survive will be the progenitors of every living thing to come: archaea, bacteria, fungi, plants, and animals.

Within this dying mass of cells, each scrapping for and scraping by on the merest minimums of nutrients and moisture, each one doing whatever it can to answer the primal call to reproduce, there is a unique species. Let’s call it Magna superstes. That’s Latin for “great survivor.”

It does not look very different from the other organisms of the day, but M. superstes has a distinct advantage: it has evolved a genetic survival mechanism.

There will be far more complicated evolutionary steps in the eons to come, changes so extreme that entire branches of life will emerge. These changes—the products of mutations, insertions, gene rearrangements, and the horizontal transfer of genes from one species to another—will create organisms with bilateral symmetry, stereoscopic vision, and even consciousness.

By comparison, this early evolutionary step looks, at first, to be rather simple. It is a circuit. A gene circuit.

The circuit begins with gene A, a caretaker that stops cells from reproducing when times are tough. This is key, because on early planet Earth, most times are tough. The circuit also has a gene B, which encodes for a “silencing” protein. This silencing protein shuts gene A off when times are good, so the cell can make copies of itself when, and only when, it and its offspring will likely survive.

The genes themselves aren’t novel. All life in the lake has these two genes. But what makes M. superstes unique is that the gene B silencer has mutated to give it a second function: it helps repair DNA. When the cell’s DNA breaks, the silencing protein encoded by gene B moves from gene A to help with DNA repair, which turns on gene A. This temporarily stops all sex and reproduction until the DNA repair is complete.

This makes sense, because while DNA is broken, sex and reproduction are the last things an organism should be doing. In future multicellular organisms, for instance, cells that fail to pause while fixing a DNA break will almost certainly lose genetic material. This is because DNA is pulled apart prior to cell division from only one attachment site on the DNA, dragging the rest of the DNA with it. If DNA is broken, part of a chromosome will be lost or duplicated. The cells will likely die or multiply uncontrollably into a tumor.

With a new type of gene silencer that repairs DNA, too, M. superstes has an edge. It hunkers down when its DNA is damaged, then revives. It is superprimed for survival.

THE EVOLUTION OF AGING. A 4-billion-year-old gene circuit in the first life-forms would have turned off reproduction while DNA was being repaired, providing a survival advantage. Gene A turns off reproduction, and gene B makes a protein that turns off gene A when it is safe to reproduce. When DNA breaks, however, the protein made by gene B leaves to go repair DNA. As a result, gene A is turned on to halt reproduction until repair is complete. We have inherited an advanced version of this survival circuit.

And that’s good, because now comes yet another assault on life. Powerful cosmic rays from a distant solar eruption are bathing the Earth, shredding the DNA of all the microbes in the dying lakes. The vast majority of them carry on dividing as if nothing has happened, unaware that their genomes have been broken and that reproducing will kill them. Unequal amounts of DNA are shared between mother and daughter cells, causing both to malfunction. Ultimately, the endeavor is hopeless. The cells all die, and nothing is left.

Nothing, that is, but M. superstes. For as the rays wreak their havoc, M. superstes does something unusual: thanks to the movement of protein B away from gene A to help repair the DNA breaks, gene A switches on and the cells stop almost everything else they are doing, turning their limited energy toward fixing the DNA that has been broken. By virtue of its defiance of the ancient imperative to reproduce, M. superstes has survived.

When the latest dry period ends and the lakes refill, M. superstes wakes up. Now it can reproduce. Again and again it does so. Multiplying. Moving into new biomes. Evolving. Creating generations upon generations of new descendants.

They are our Adam and Eve.

Like Adam and Eve, we don’t know if M. superstes ever existed. But my research over the past twenty-five years suggests that every living thing we see around us today is a product of this great survivor, or at least a primitive organism very much like it. The fossil record in our genes goes a long way to proving that every living thing that shares this planet with us still carries this ancient genetic survival circuit, in more or less the same basic form. It is there in every plant. It is there in every fungus. It is there in every animal.

It is there in us.

I propose the reason this gene circuit is conserved is that it is a rather simple and elegant solution to the challenges of a sometimes brutish and sometimes bounteous world that better ensures the survival of the organisms that carry it. It is, in essence, a primordial survival kit that diverts energy to the area of greatest need, fixing what exists in times when the stresses of the world are conspiring to wreak havoc on the genome, while permitting reproduction only when more favorable times prevail.

<< 1 2 3 4 5 6 7 ... 13 >>
На страницу:
3 из 13