Оценить:
 Рейтинг: 0

Математические модели в естественнонаучном образовании. Том I

Год написания книги
2022
Теги
<< 1 ... 6 7 8 9 10 11 12 13 14 ... 50 >>
На страницу:
10 из 50
Настройки чтения
Размер шрифта
Высота строк
Поля

 и

, но положить

, то паутина будет выглядеть так, как показано на рисунке 1.4.

Рисунок 1.4. Паутинная диаграмма нелинейной модели.

Действительно, становится ясным, что если

 имеет значение больше, чем

, то наблюдается немедленное падение численности популяции. Если такое падение окажется ниже критического, то произойдёт постепенное увеличение, приближающееся обратно к предельному значению пропускной способности модели.

Вопросы для самопроверки:

– Для модели

 найдите отличное от нуля значение

, соответствующее абсциссе точки пересечения параболы с горизонтальной осью, то есть имеющей ординату

.

– Что произойдет, если

 выбрать больше, чем значение, найденное в предыдущем вопросе?

Если популяция становится отрицательной, то мы должны интерпретировать это как вымирание.

На этом этапе можно узнать гораздо больше, изучая логистическую модель с помощью калькулятора или компьютера, чем просто прочитав текст. Упражнения ниже помогут в этом. На самом деле обнаружится, что логистическая модель имеет некоторые сюрпризы, которые вы, возможно, не ожидаете.

Задачи для самостоятельного решения:

1.2.1. Пусть

 и

. С помощью калькулятора составьте таблицу популяционных значений

 для

. Изобразите полученные результаты на графике.

1.2.2. В модели

, какие значения

 приведут к тому, что

 окажется положительным? Отрицательным? Какой смысл это имеет?

1.2.3. Повторите решение задачи 1 в MATLAB с помощью команд аналогичных следующим:

p=1; x=p

for i=1:22; p=p+.3*p*(1-p/15); x=[x p]; end

plot([0:22], x)

Объясните, как это работает.

1.2.4. Используя следующую программу onepop.m для MATLAB при различных значениях

, исследуйте долгосрочное поведение модели

, где

. Возможно, придется изменить количество шагов, с которыми вы запускаете модель, чтобы изучить некоторые из вариантов.

% onepop.m

%

% Модель популяции одного вида

%

% У пользователя запрашивается уравнение, определяющее модель. Затем, кликнув

% по начальной численности популяции на графике, динамика популяции как функция

% от времени будет изображена в виде графика. После выполнения симуляции

% при нажатии клавиши 'd' числовые данные отобразятся в командное окно MATLAB.

%

p=0;                          % инициализация переменной популяции для формулы

%

disp(' ')

disp(' Введите формулу, определяющую модель популяции, обозначая за "p"')

disp('численность популяции: (Например: следующее_p = p+.8*p*(1-p/10) )')

next_p=input ('следующее_p = ','s');
<< 1 ... 6 7 8 9 10 11 12 13 14 ... 50 >>
На страницу:
10 из 50