Оценить:
 Рейтинг: 0

Математические модели в естественнонаучном образовании. Том I

Год написания книги
2022
Теги
<< 1 ... 13 14 15 16 17 18 19 20 21 ... 50 >>
На страницу:
17 из 50
Настройки чтения
Размер шрифта
Высота строк
Поля

-цикл, будет короче, чем для предыдущего

-цикла. Таким образом, как только

 становится достаточно большим, небольшие дополнительные увеличения его значения имеют более радикальные последствия.

Во-вторых, если

 продолжает увеличиваться после определенной точки (?2.692…), на рисунке 1.6 этот фрагмент подсвечен красным, то все бифуркации на

-циклах произошедшие ранее начинают смешиваться, обнаруживается принципиально иной тип поведения аттракторов. Создается впечатление, что предельные значения модели изменяются более или менее случайным образом. Однако такое поведение, конечно, не случайно – существует полностью детерминированная формула, воспроизводящая его. Техническая терминология для описания того, что произошло, заключается в том, что поведение модели стало хаотичным. Выбор слова «хаос» для описания этого процесса, возможно, неудачен, поскольку вызывает ассоциацию с элементами случайности и изначальной путаницы, которых на самом деле нет. Тем не менее, данная математическая модель прекрасно находит себе практическое применение в современных цифровых криптосистемах и аналоговых системах радиоэлектронной борьбы, поскольку достаточно просто реализуется на аппаратном уровне.

Подобный «хаос» в действительности имеет довольно точное техническое определение, но не будем его приводить. Вместо этого просто неформально укажем на два требования, которые математики предъявляют к употреблению этого слова: 1) модель должна быть детерминированной, то есть в ней не может быть случайности; и 2) прогнозы модели чрезвычайно чувствительны к начальным условиям.

Чтобы увидеть, как именно дискретная логистическая модель проявляет свою хаотичность, например, зафиксировав

, достаточно проиллюстрировать проявление второго требования. На рисунке 1.7 показаны значения

, которые возникают из двух разных, но достаточно близких друг к другу значений

 и

.

Рисунок 1.7 Результаты роста значения

, полученные из двух близких начальных значениях

 для логистической модели

 при

.

Обратите внимание на тот факт, что, хотя популяции и изменяются похожим образом в течение нескольких первых шагов, после этого они становятся полностью различимыми. В результате для такой пары значений наблюдается чрезвычайная чувствительность модели к начальным условиям. Конечно, это не является доказательством чего-либо, и вполне возможно, что такое поведение было просто последствием череды ошибок компьютерного округления. Однако математиками строго доказано, что это подлинный «хаос».

Возможность хаотического поведения в такой простой популяционной модели, как дискретная логистическая, вызвала большой ажиотаж в 1970-х годах, когда она была впервые опубликована в работе Мэй от 1978 года. Если бы такая простая модель смогла воспроизводить сложное поведение любой динамической системы, то от гипотезы о том, что сложная динамическая система может возникать лишь из сложных взаимодействий и флуктуаций окружающей среды пришлось бы отказаться. Дальнейшая работа Мэй с сотоварищами по вычислению соответствующих значений таких параметров, как

, в математических моделях на основании лабораторных и реальных популяциях насекомых заставила их усомниться в том, что хаотическое поведение действительно наблюдается в реальной динамике живых популяций. Тем не менее, исследование эпидемий кори в Нью-Йорке действительно предполагало возможность контролируемого хаоса. Однако эпидемический паротит и ветряная оспа, как оказалось, вели себя отнюдь не хаотично. Хотя та работа все еще не теряет актуальности, существует очень мало данных высокого качества и достаточно длительной продолжительности, чтобы в действительности проверить ключевую идею. В последнее время основное внимание уделялось демографическим моделям, более сложным, чем логистические. Фактически, в 1996 году Кушинг и др. объявили о первом открытии реальной популяции, лабораторной популяции мучного жука триболия, которая демонстрировала хаотическую динамику и опубликовали этот результат в 2001 году.

Задачи для самостоятельного решения:

1.3.1. Точки равновесия модели располагаются там, где график зависимости

 от

 пересекает прямую линию

. Предположим, что фокусируемся на участке графика вокруг точки равновесия и увеличиваем масштаб так, чтобы график функции

 от

 казался прямой линией. В каждой из моделей, показанных на рисунке 1.8, решите, является ли равновесие стабильным или нестабильным, выбрав значение

 близкое к устойчивому состоянию, а затем изобразите паутинную диаграмму.

а.

б.

в.

г.

Рисунок 1.8. Заготовки паутинных диаграмм для задачи 1.3.1.

1.3.2. Исходя из приведенной выше задачи, в каком диапазоне должен находиться наклон графика функции

 от

 в точке равновесия, чтобы обеспечить стабильность? Неустойчивость? Подсказка: возможно, захотите подумать об особых случаях, взяв наклон сначала ?1, а затем 1.

1.3.3. Средствами математического анализа сформулируйте ответ на предыдущую задачу на языке производных: если

 является точкой равновесия модели

, то она стабильна, когда выполнено следующее условие _________________ .

1.3.4. С точки зрения математики, имея дело с логистической моделью роста

, всегда можно выбрать единицы, в которых измеряется

 так, чтобы

.Таким образом, можно рассматривать уравнение

, имеющее только один параметр

, а не два. Исследуйте долгосрочное поведение этой модели для различных значений

, начиная с .5 и постепенно увеличивая его, используя программу onepop.m для MATLAB из задачи 1.2.4. При каких значениях

 обнаруживается сходимость к равновесию без колебаний? А при каких

 сходимость к равновесию осуществляется с колебаниями? При каких

 появляется 2-цикл? А при каких – цикл длины 4?

1.3.5. В предыдущем упражнении обнаружили, что по мере увеличения
<< 1 ... 13 14 15 16 17 18 19 20 21 ... 50 >>
На страницу:
17 из 50