Оценить:
 Рейтинг: 0

Цифры врут. Как не дать статистике обмануть себя

Год написания книги
2021
Теги
<< 1 2
На страницу:
2 из 2
Настройки чтения
Размер шрифта
Высота строк
Поля

Но, как обычно, всё несколько сложнее.

С 2000 по 2013 год медианная заработная плата в США выросла примерно на 1 % в реальном выражении (то есть с учетом инфляции).

Эту врезку читать необязательно, но, если вы не помните разницу между медианой и средним арифметическим, не пропускайте ее.

Понятия среднего арифметического, медианы и моды вы могли узнать в школе. Что такое среднее арифметическое, наверное, даже помните – нужно сумму нескольких чисел разделить на их количество. А медиана – это среднее число в последовательности чисел.

Разница вот в чем. Пусть население – 7 человек, причем один из них зарабатывает 1 фунт в год, один – 2 фунта и так далее – до 7. Если все эти числа сложить, получится 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. Разделив 28 на число людей (7), получим 4 фунта. Среднее арифметическое – 4 фунта.

А чтобы узнать медиану, числа не складывают, а располагают по возрастанию: с левого края заработок в 1 фунт, потом – 2, и так до 7 с правого края. Так вы увидите, кто оказался в середине – человек, получающий 4 фунта. Так что и медиана у нас равна 4 фунтам.

Теперь представим, что тот, кто зарабатывает 7 фунтов, продает свой технический стартап компании Facebook за миллиард. Наше среднее арифметическое внезапно становится равно (1 + 2 + 3 + 4 + 5 + 6 + 1 000 000 000) / 7 = 142 857 146 фунтам. Таким образом, хотя положение 6 из 7 человек никак не изменилось, «среднестатистический гражданин» стал мультимиллионером.[3 - Принадлежит компании Meta, которая признана экстремистской организацией и запрещена в РФ. – Прим. ред.]

В подобных случаях неравномерного распределения статистики часто предпочитают иметь дело с медианой. Если мы снова выстроим людей по порядку возрастания их зарплат, то в середине опять окажется тот, кто зарабатывает 4 фунта. При изучении реального населения, состоящего из миллионов человек, медиана дает лучшее представление о ситуации, чем среднее арифметическое, особенно если оно искажено зарплатами нескольких суперпреуспевающих работников.

А мода – это самое частое значение. Поэтому, если у вас есть 17 человек, зарабатывающих по 1 фунту, 25 – по 2 и 42 – по 3, то мода – 3 фунта. Все несколько усложняется, когда статистики принимаются с помощью моды описывать непрерывные величины вроде высоты, но об этом мы пока постараемся не думать…

Кажется, что рост медианной заработной платы – это хорошо. Но если рассмотреть отдельные группы населения США, то можно обнаружить нечто странное. Медианный заработок тех, кто окончил только среднюю школу, снизился на 7,9 %; тех, кто окончил старшие классы, – на 4,7 %. Медианный заработок людей с неполным высшим образованием снизился на 7,6 %, а с высшим образованием – на 1,2 %.

Окончившие и не окончившие старшие классы, окончившие и не окончившие колледж – медианная зарплата во всех группах с определенным уровнем образования снизилась, хотя медианная зарплата населения в целом повысилась.

Как так?

Дело в том, что количество людей с высшим образованием увеличилось, а их медианный заработок снизился. В результате с медианой происходят странности. Это называется парадоксом Симпсона – в 1951 году его впервые описал британский дешифровщик и статистик Эдвард Симпсон. Парадокс распространяется не только на медианы, но и на среднее арифметическое – однако в нашем примере мы поговорим о медианах.

Предположим, что население – 11 человек. Трое из них не пошли в старшие классы и зарабатывают по 5 фунтов в год; трое окончили школу и зарабатывают по 10; трое бросили университет и зарабатывают по 15; а двое закончили бакалавриат и зарабатывают по 20 фунтов. Медианная зарплата такой популяции в целом (то есть зарплата среднего человека при таком распределении доходов, см. врезку на предыдущей странице) составляет 10 фунтов.

Потом правительство проводит кампанию по стимуляции населения к продолжению учебы в старших классах и в университетах. При этом медианная зарплата в каждой группе уменьшается на 1 фунт. Внезапно оказывается, что школу не закончили двое и они получают по 4 фунта, двое выпускников школы зарабатывают по 9, двое бросивших университет – по 14, а пять выпускников университета – по 19. В каждой группе медианная зарплата уменьшилась на 1 фунт, но у населения в целом она выросла с 10 фунтов до 14. Вот и в американской экономике в период с 2000 по 2013 год случилось нечто подобное, только в более крупных масштабах.

Такое происходит на удивление часто. Например, чернокожие американцы курят чаще, чем белые, но если разбить их на группы по уровню образования, то оказывается, что в каждой из них чернокожие курят реже. А все потому, что среди более образованных граждан, где процент курящих меньше, ниже доля чернокожих.

Или вот еще один широко известный пример. В сентябре 1973 года в аспирантуру Калифорнийского университета в Беркли подали заявки 8000 мужчин и 4000 женщин. Из них было принято 44 % мужчин и только 35 % женщин.

Но если посмотреть повнимательнее, то можно заметить: почти на всех факультетах у женщин было больше шансов поступить. Самый популярный факультет принял 82 % подавших заявки женщин и лишь 62 % мужчин; второй по популярности – 68 % женщин и 65 % мужчин.

Тут дело в том, что женщины подавали заявки на факультеты с самым большим конкурсом. На один из факультетов было подано 933 заявки, из которых 108 подали женщины. Зачислили 82 % женщин и 62 % мужчин.

В то же время на шестой по популярности факультет было подано 714 заявок, из них 341 от женщин. Здесь поступили 7 % женщин и 6 % мужчин.

Но если сложить данные по этим двум факультетам, то на них поступало 449 женщин и 1199 мужчин. Было принято 111 женщин (25 %) и 533 мужчины (44 %).

Еще раз: на каждом из факультетов в отдельности у женщин было больше шансов поступить, а на двух вместе – меньше.

Как это лучше всего представлять? Зависит от обстоятельств. В случае с зарплатами американцев можно считать медианы более информативными, потому что медианный американец стал зарабатывать больше (поскольку теперь больше американцев оканчивают колледжи и школы). А в случае с аспирантами можно говорить о том, что, какой бы факультет ни выбрала женщина, у нее больше, чем у мужчины, шансов поступить в аспирантуру. Но с таким же успехом можно говорить о том, что для людей, не окончивших школу, ситуация ухудшилась; и можно отметить, что тем факультетам, на которые хотят поступать женщины, явно не хватает ресурсов: они могут принять лишь небольшую долю подавших заявки. Беда в том, что в ситуациях парадокса Симпсона можно высказывать противоположные точки зрения – в зависимости от вашей политической позиции. Честнее всего тут было бы сообщать о наличии этого парадокса.

А теперь вернемся к коэффициенту распространения COVID-19. Он вырос, стало быть, вирус поражает больше людей, а это плохо.

Только все не так просто. Одновременно происходили две как бы отдельные эпидемии: в домах престарелых и больницах болезнь распространялась не так, как в стране в целом.

Мы не знаем точных цифр, потому что такие подробности не публиковались. Но мы можем провести мысленный эксперимент сродни описанному выше. Предположим, что в домах престарелых было 100 заболевших, а еще 100 – вне их. В среднем каждый больной в домах престарелых заражает троих, а вне их – двоих. Тогда коэффициент распространения (среднее число людей, зараженных одним носителем инфекции) равен 2,5.

Затем объявляется локдаун. Количество заболевших снижается, и R тоже снижается. Но – и это важный момент – в домах престарелых снижение не такое сильное, как вне их. Теперь в них 90 человек, каждый передает инфекцию в среднем 2,9 людей, а в стране 10 заболевших, передающих вирус в среднем одному человеку. Поэтому теперь R = 2,71. Он вырос! Но в обеих группах снизился.[4 - Рассчитывается так: (90 ? 2,9 + 10 ? 1) / 100 = 2,1. – Прим. авт.]

Как правильно это рассматривать? Опять-таки ответ неочевиден. Вас может в первую очередь волновать значение R, потому что на самом деле наши две эпидемии не разделяются. Тем не менее ситуация явно не сводится к утверждению: когда R растет, это плохо.

Парадокс Симпсона – один из примеров более общей проблемы, называемой «экологической ошибкой», когда вы пытаетесь судить об отдельных людях или подгруппах по средним для группы значениям. Экологическая (или популяционная) ошибка встречается чаще, чем можно предположить. Читателям и журналистам важно понимать, что общая величина не всегда отражает реальность, а чтобы досконально разобраться в ситуации, следует копать глубже.

Глава 2

Отдельные наблюдения

В 2019 году сразу две газеты, Daily Mail и Mirror, написали о женщине, которая, узнав, что у нее терминальная стадия рака, прошла альтернативное лечение в мексиканской клинике. Ее терапия «включала гипербарическую оксигенацию, общую гипотермию, инфракрасное облучение, воздействие импульсного электромагнитного поля, кофейные клизмы, посещения сауны и внутривенное введение витамина С». И опухоль резко уменьшилась.

Мы предполагаем, что большинство читателей этой книги относятся к подобным историям со здоровым скептицизмом. Но этот случай – прекрасная отправная точка для понимания того, как числа могут вести к неверным выводам. На первый взгляд кажется, что здесь нет никаких чисел, однако одно неявно присутствует – единица. История одного человека служит основой для доказательства утверждения. Это пример того, что мы называем отдельным наблюдением (anecdotal evidence).

У таких доказательств плохая репутация, но назвать все такие рассуждения принципиально неверными нельзя. Как мы обычно решаем, где правда, а где ложь? Очень просто: проверяем утверждение сами или слушаем людей, проверивших его.

Если мы прикоснулись к горячей сковородке и обожглись, то мы, опираясь на этот единственный случай, приходим к выводу, что горячие сковородки обжигают и всегда будут обжигать и что их лучше не трогать. Более того: если кто-то скажет, что сковородка горячая и что мы обожжемся, если ее коснемся, мы легко в это поверим. Нас убеждает опыт других людей. В этом примере можно обойтись без всякого статистического анализа.

В жизни такой подход почти всегда срабатывает. Обучение на базе рассказа или личного опыта – когда человек делает вывод на основе отдельного наблюдения – довольно эффективно. Но почему? Почему единичное наблюдение тут годится, а в других случаях – нет?

Потому что еще одно прикосновение к горячей сковородке почти наверняка даст тот же результат. Можете трогать ее раз за разом – будьте уверены: вы каждый раз обожжетесь. Это нельзя доказать со стопроцентной уверенностью: возможно, на 15 363 205-й раз поверхность покажется холодной. Или на 25 226 968 547-й. Можно продолжать трогать сковородку до скончания века, чтобы убедиться – хотя вряд ли оно того стоит, – что она всегда обжигает. Но большинству людей достаточно один раз обжечься.

Есть и другие события, которые всегда происходят одинаково. Если отпустить что-то тяжелое, оно непременно упадет. Это неизменно, если вы находитесь на Земле. Как событие произошло в первый раз, так оно и будет происходить всегда. В статистике про такие события говорят, что они репрезентативны для распределения событий.

Отдельных случаев трудно избежать. Мы будем опираться на них на протяжении всей книги, показывая на конкретных примерах, какие ошибки делают СМИ. Надеемся, вы поверите, что они типичны и наглядно демонстрируют, что иной раз творится с числами.

Проблемы возникают, когда вы опираетесь на примеры в менее предсказуемых ситуациях, где распределение событий не так очевидно. Например, вы не сковородку трогаете, а гладите собаку, и она вас кусает. Разумно впредь проявлять большую осторожность, но не стоит считать, что, прикасаясь к собаке, вы обречены на укус. Или вы выпускаете из рук не что-то тяжелое, а воздушный шарик. Вы видите, как он поднимается и ветер сносит его на запад, но нельзя сделать вывод, что выпущенный из рук шарик всегда летит в этом направлении. Беда в том, что трудно определить, какие ситуации однотипны и предсказуемы (как случаи с горячей сковородой или брошенным камнем), а какие – нет (как с шариком).

Эта проблема характерна для медицины. Допустим, вас мучает головная боль – и вы принимаете какое-то лекарство, например парацетамол. Многим людям он помогает. Но заметной доле пациентов – нет. У каждого из них своя история, свой случай, когда лекарство не сработало, хотя в среднем оно и снижает боль. Ни один случай, ни несколько не дают полной картины.

А вот СМИ любят ссылаться на конкретные истории. Например: «Я вылечил хроническую боль в пояснице с помощью пластыря стоимостью в 19 фунтов, хотя врачи не хотели мне его прописывать», – цитировала Гари из Эссекса газета Mirror в марте 2019 года. Гари годами страдал от остеохондроза и был вынужден уйти на пенсию в 55. Он жил на чудовищной смеси болеутоляющих и противовоспалительных и тратил на нее тысячи фунтов в год. А потом стал применять пластырь ActiPatch, который «с помощью электромагнитных импульсов стимулирует нейромодуляцию нервов, помогая подавить болевые ощущения». Вскоре ему удалось вдвое снизить дозу болеутоляющих. Помог ли ему пластырь? Возможно. Но из самой истории этого узнать нельзя.

Согласно систематическому обзору, опубликованному в British Medical Journal в апреле 2010-го, в мире каждый десятый страдает от боли в пояснице (в одной Великобритании – это миллионы людей). Ощущения весьма неприятные, а врачи особо ничем, кроме болеутоляющих и упражнений, помочь не могут, поэтому пациенты нередко обращаются к альтернативной медицине, применяя пластырь ActiPatch или что-то аналогичное. Причем порой кому-то становится лучше независимо от того, лечится он или нет.

Так что довольно часто пациент обращается к новому нетрадиционному средству и при этом ему становится лучше. Но довольно часто эти события никак между собой не связаны. Поэтому отдельные случаи того, как кому-то помогло какое-то средство, могут оказаться мнимыми.

Ситуацию усугубляет то, что СМИ любят новости. Они старательно выискивают самые интересные, удивительные или трогательные – в общем, привлекающие внимание сообщения. Журналистов трудно в этом винить – не могут же они рассказывать о будничной жизни среднестатистического гражданина. Просто это означает, что удивительные истории чаще попадают в газеты, чем обычные.

Уточним: это необязательно относится к Гари с его пластырем. Если свидетельство неубедительно, это еще не значит, что вывод неверный. Возможно, пластырь действительно эффективен (есть некоторые свидетельства, что такие средства помогают, а американское Управление по санитарному надзору за качеством пищевых продуктов и медикаментов в 2020 году разрешило применять ActiPatch для лечения спины), и, возможно, Гари он помог. Просто его история не дает оснований для такого вывода. Если раньше мы не верили в лечебные свойства ActiPatch, то и теперь нет причины.

Неприятно, когда болит поясница, и это, конечно, накладывает на жизнь Гари жесткие ограничения. И если, прочтя его историю, товарищи Гари по несчастью станут использовать пластырь в надежде, что он поможет, в этом нет ничего плохого. Иногда даже наоборот: если лечение окажется успешным, снизит боль за счет эффекта плацебо или просто даст надежду на исцеление (хоть за это и заплатит система здравоохранения или сам пациент).

Иные истории звучат смешно. Например, в другой публикации газеты Mail в 2019 году рассказывается о шестерых излечившихся от псориаза. Они использовали гомеопатические средства, основанные на змеином яде, рвотных массах кита, протухшем мясе и «гное из уретры больного гонореей».

Порой о таких рецептах говорят, что «вреда-то нет». Но иногда – в начале главы мы рассказывали о женщине, лечившейся альтернативными средствами от рака, – все обстоит серьезнее. Уточним: нет никаких убедительных оснований считать, что гипербарическая оксигенация или кофейные клизмы помогают от онкологических заболеваний. Но есть все основания полагать, что многие отчаявшиеся онкологические больные – а их миллионы – готовы бороться с болезнью самыми экстремальными способами и что иногда таким больным становится лучше. Причем, как и в случае с Гари и его поясницей, существует огромная вероятность совпадения этих двух событий.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2
На страницу:
2 из 2

Другие аудиокниги автора Дэвид Чиверс