Оценить:
 Рейтинг: 0

Оптимизация в Python

Год написания книги
2023
Теги
<< 1 ... 8 9 10 11 12 13 14 15 16 17 >>
На страницу:
12 из 17
Настройки чтения
Размер шрифта
Высота строк
Поля

if __name__ == "__main__":

cProfile.run('my_function()', filename='my_profile.prof')

snakeviz.view('my_profile.prof')

```

В этом примере мы используем `cProfile` для профилирования функции `my_function()`. Результат сохраняется в файл `'my_profile.prof'`. Затем мы используем `snakeviz` для визуализации результатов. Вызов `snakeviz.view('my_profile.prof')` откроет интерактивный веб-отчет с информацией о времени выполнения функций.

Пример с line_profiler и визуализацией результатов с использованием SnakeViz:

```python

from line_profiler import LineProfiler

import snakeviz

lp = LineProfiler()

@lp.profile

def my_function():

result = 0

for i in range(1, 10001):

result += i

return result

if __name__ == "__main__":

my_function()

lp.print_stats()

lp.dump_stats('my_profile.lprof')

snakeviz.view('my_profile.lprof')

```

В этом примере мы используем `line_profiler` для построчного профилирования функции `my_function()`. Результат сохраняется в файл `'my_profile.lprof'`. Затем мы снова используем `snakeviz` для визуализации результатов, вызывая `snakeviz.view('my_profile.lprof')`. Это позволит вам просматривать статистику времени выполнения построчно.

Пример с memory_profiler и визуализацией результатов с использованием SnakeViz:

```python

from memory_profiler import profile

import snakeviz

@profile

def my_function():

big_list = [i for i in range(1000000)]

return sum(big_list)

if __name__ == "__main__":

my_function()

snakeviz.view('my_function.mprof')

```

В этом примере мы используем `memory_profiler` для профилирования использования памяти функцией `my_function()`. Результат сохраняется в файл `'my_function.mprof'`. Затем мы снова используем `snakeviz` для визуализации результатов, вызывая `snakeviz.view('my_function.mprof')`. Это создаст интерактивный отчет о памяти, использованной вашей функцией.

Таким образом, с использованием SnakeViz вы можете визуализировать результаты профилирования, сделанные с помощью различных модулей, для более наглядного и удобного анализа производительности вашего Python-кода.

Глава 3: Оценка времени выполнения алгоритмов

3.1. Большое O и сложность алгоритмов

Оценка времени выполнения алгоритмов является важной частью оптимизации программного обеспечения. В этой главе мы будем рассматривать концепцию "Большого O" (Big O) и сложность алгоритмов, которые помогут нам анализировать и сравнивать производительность различных алгоритмов.

Большое O (Big O) – это математическая нотация, используемая для оценки асимптотической сложности алгоритмов. Она помогает нам определить, как алгоритм будет вести себя при увеличении размера входных данных. Важно понимать, что Big O описывает верхнюю границу роста времени выполнения алгоритма, то есть, как его производительность будет изменяться при увеличении размера входных данных.

Примеры некоторых общих классов сложности в нотации Big O:

– O(1) – постоянная сложность. Время выполнения алгоритма не зависит от размера входных данных.

– O(log n) – логарифмическая сложность. Время выполнения растет логарифмически от размера входных данных.

– O(n) – линейная сложность. Время выполнения пропорционально размеру входных данных.

– O(n log n) – линейно-логарифмическая сложность.

– O(n^2) – квадратичная сложность.

– O(2^n) – экспоненциальная сложность.

Анализ сложности алгоритмов помогает выбрать наилучший алгоритм для решения конкретной задачи, и представляет собой важную часть процесса оптимизации. В этой главе мы также будем рассматривать примеры алгоритмов и их оценку с использованием нотации Big O, чтобы лучше понять, как работает анализ сложности алгоритмов.

Подробно рассмотрим анализ сложности алгоритмов с использованием нотации Big O, чтобы лучше понять, как это работает.
<< 1 ... 8 9 10 11 12 13 14 15 16 17 >>
На страницу:
12 из 17