Оценить:
 Рейтинг: 0

120 практических задач

Год написания книги
2024
Теги
<< 1 ... 26 27 28 29 30 31 32 33 34 ... 46 >>
На страницу:
30 из 46
Настройки чтения
Размер шрифта
Высота строк
Поля

# Параметры модели

input_shape = (256, 256, 3) # размер входного изображения (примерное значение)

# Создание модели CNN

model = Sequential()

# Сверточные слои

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

# Преобразование из двумерного вектора в одномерный

model.add(Flatten())

# Полносвязные слои

model.add(Dense(256, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax')) # num_classes – количество классов для классификации

# Компиляция модели

model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])

# Вывод архитектуры модели

model.summary()

```

Пояснение архитектуры и процесса:

1. Сверточные слои (Convolutional Layers): Каждый сверточный слой извлекает признаки из изображений. Уменьшение размера с помощью слоев пулинга (Pooling) помогает снизить количество параметров и улучшить вычислительную эффективность.

2. Полносвязные слои (Dense Layers): После извлечения признаков на последнем слое свертки, данные преобразуются в одномерный вектор и передаются через полносвязные слои для окончательной классификации.

3. Компиляция и обучение модели: Модель компилируется с функцией потерь `categorical_crossentropy` (подходящей для многоклассовой классификации), оптимизатором Adam и метрикой точности. После компиляции модель обучается на обучающих данных и валидируется на валидационной выборке.

Преимущества использования CNN для классификации медицинских изображений

– Извлечение признаков: Сверточные слои CNN автоматически извлекают важные признаки из изображений, что особенно важно для медицинских изображений.

– Автоматическая локализация: CNN способны локализовать аномалии или признаки заболеваний на изображениях.

– Способность к обучению: Модели CNN могут обучаться на больших наборах данных и достигать высокой точности, что необходимо для надежной диагностики.

Этот подход активно применяется в медицинских исследованиях и практике для автоматизации процесса диагностики и повышения точности обнаружения заболеваний на основе медицинских изображений.

18. Создание нейронной сети для синтеза текста

– Задача: Генерация текста на основе заданного начала.

Создание нейронной сети для синтеза текста – это задача, в которой модель обучается генерировать текст на основе предыдущего контекста или начальной последовательности слов. Такие модели могут быть построены с использованием рекуррентных нейронных сетей (RNN), включая LSTM (Long Short-Term Memory) или GRU (Gated Recurrent Unit), которые способны улавливать долгосрочные зависимости в тексте.

Построение нейронной сети для синтеза текста

1. Подготовка данных

Процесс подготовки данных для обучения модели синтеза текста включает:

– Загрузку текстового корпуса, на котором будет обучаться модель.

– Токенизацию текста (разделение текста на отдельные слова или символы).

– Формирование последовательностей данных для обучения, где модель прогнозирует следующее слово или символ на основе предыдущих.

2. Построение модели RNN для синтеза текста

Рассмотрим пример простой архитектуры модели с использованием LSTM:

```python

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Embedding

# Пример создания нейронной сети для синтеза текста на основе LSTM
<< 1 ... 26 27 28 29 30 31 32 33 34 ... 46 >>
На страницу:
30 из 46