– Веса (Weights): Веса связей между нейронами внутри RNN. Эти веса определяют, как информация передается от одного нейрона к другому и как она обновляется на каждом временном шаге.
– Смещения (Biases): Смещения добавляются к взвешенной сумме входов, перед применением активационной функции, и могут управлять смещением активации нейронов.
2. Инициализация параметров: Параметры RNN обычно инициализируются случайными значениями перед началом обучения. Эти начальные значения могут быть заданы случайным образом или с использованием различных методов инициализации весов.
3. Обучение сети: Во время обучения RNN параметры модели настраиваются для минимизации функции потерь (loss function) на тренировочных данных. Это происходит с использованием методов оптимизации, таких как градиентный спуск (gradient descent).
4. Градиентный спуск – это оптимизационный метод, который используется для обновления параметров сети на каждом этапе обучения. Он вычисляет градиент (производные) функции потерь по параметрам сети и обновляет параметры в направлении, которое минимизирует функцию потерь.
5. Итерации обучения: Обучение RNN происходит итеративно на множестве тренировочных данных. На каждой итерации параметры обновляются таким образом, чтобы уменьшить ошибку модели на тренировочных данных.
6. Результат обучения: После завершения обучения параметры RNN настроены таким образом, чтобы модель могла делать предсказания на новых данных, которые она ранее не видела.
7. Тонкая настройка: Важно отметить, что оптимизация параметров RNN – это искусство, и существует много методов для тонкой настройки параметров и параметров оптимизации, чтобы достичь лучшей производительности на конкретной задаче.
Параметры, обучаемые сетью, позволяют RNN адаптироваться к различным задачам и данным, делая их мощным инструментом для разнообразных задач, связанных с последовательными данными, включая обработку текста, анализ временных рядов и многое другое.
Давайте рассмотрим пример использования обучаемых параметров в нейронной сети на языке Python с использованием библиотеки TensorFlow. В этом примере мы создадим простую RNN для задачи прогнозирования временных рядов.
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
# Генерируем пример временного ряда
np.random.seed(0)
n_steps = 100
time = np.linspace(0, 10, n_steps)
series = 0.1 * time + np.sin(time)
# Подготавливаем данные для обучения RNN
n_steps = 30 # количество временных шагов в одной последовательности
n_samples = len(series) – n_steps
X = [series[i:i+n_steps] for i in range(n_samples)]
y = series[n_steps:]
X = np.array(X).reshape(-1, n_steps, 1)
y = np.array(y)
# Создаем модель RNN
model = Sequential()
model.add(SimpleRNN(10, activation="relu", input_shape=[n_steps, 1]))
model.add(Dense(1))
# Компилируем модель
model.compile(optimizer="adam", loss="mse")
# Обучаем модель
model.fit(X, y, epochs=10)
# Делаем прогноз на будущее
future_steps = 10
future_x = X[-1, :, :]
future_predictions = []
for _ in range(future_steps):
future_pred = model.predict(future_x.reshape(1, n_steps, 1))
future_predictions.append(future_pred[0, 0])
future_x = np.roll(future_x, shift=-1)
future_x[-1] = future_pred[0, 0]
# Выводим результаты
import matplotlib.pyplot as plt
plt.plot(np.arange(n_steps), X[-1, :, 0], label="Исходные данные")
plt.plot(np.arange(n_steps, n_steps+future_steps), future_predictions, label="Прогноз")
plt.xlabel("Временной шаг")
plt.ylabel("Значение")