Оценить:
 Рейтинг: 0

Искусственный интеллект в прикладных науках. Транспорт и логистика

Год написания книги
2024
Теги
<< 1 2 3 4 5 6
На страницу:
6 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)

# Установка входа для нейронной сети

net.setInput(blob)

# Получение списка имен слоев

layer_names = net.getLayerNames()

output_layers = [layer_names[i[0] – 1] for i in net.getUnconnectedOutLayers()]

# Прохождение обратно через сеть и обнаружение объектов

outs = net.forward(output_layers)

# Предполагаемые области идентификации

boxes = []

confidences = []

class_ids = []

# Обработка выходных данных нейронной сети

for out in outs:

for detection in out:

scores = detection[5:]

class_id = np.argmax(scores)

confidence = scores[class_id]

if confidence > 0.5:

# Параметры ограничивающего прямоугольника

center_x = int(detection[0] * width)

center_y = int(detection[1] * height)

w = int(detection[2] * width)

h = int(detection[3] * height)

x = int(center_x – w / 2)

y = int(center_y – h / 2)

boxes.append([x, y, w, h])

confidences.append(float(confidence))

class_ids.append(class_id)

# Отображение результатов

for i in range(len(boxes)):

x, y, w, h = boxes[i]

label = str(classes[class_ids[i]])

confidence = confidences[i]

color = (0,255,0)

cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)

cv2.putText(image, label + " " + str(round(confidence, 2)), (x, y – 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

# Отображение изображения с обнаруженными объектами

cv2.imshow("Object Detection", image)

cv2.waitKey(0)

cv2.destroyAllWindows()

```

Примечание:

– Вам нужно иметь предварительно обученную модель (например, YOLO) и файл с классами объектов (например, coco.names).


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4 5 6
На страницу:
6 из 6