Оценить:
 Рейтинг: 0

Нейросети. Обработка аудиоданных

Год написания книги
2023
Теги
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
6 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

– Она может быть использована для многоклассовой и бинарной классификации.

– Она штрафует модель за неверные уверенные предсказания вероятностей, что позволяет сделать её более уверенной и точной.

– Она штрафует большие различия между фактическими метками и предсказанными вероятностями сильнее, что делает её чувствительной к выбросам.

Выбор кросс-энтропии как функции потерь в задачах классификации обусловлен тем, что она стимулирует модель предсказывать вероятности классов, что часто является необходимым в задачах классификации.

– 

Категориальная кросс

-

энтропия

:

Используется в задачах многоклассовой классификации

,

где классы не взаимосвязаны

.

Категориальная кросс-энтропия (Categorical Cross-Entropy) – это функция потерь, которая часто применяется в задачах многоклассовой классификации, где классы не взаимосвязаны и каждый пример может быть отнесен к одному и только одному классу из набора классов. Эта функция потерь измеряет расхождение между вероятностным распределением, предсказанным моделью, и фактичными метками классов.

Применение категориальной кросс-энтропии в задачах многоклассовой классификации выглядит следующим образом:

1. Для каждого примера в наборе данных модель предсказывает вероятности принадлежности этого примера к каждому классу. Эти вероятности образуют вектор вероятностей, где каждый элемент соответствует вероятности принадлежности к одному из классов.

2. Фактичные метки классов для каждого примера также представляются в виде вектора, где один элемент равен 1 (класс, к которому пример принадлежит), а остальные элементы равны 0.

3. Сравнивая вероятности, предсказанные моделью, с фактичными метками классов, вычисляется категориальная кросс-энтропия для каждого примера. Формула для вычисления категориальной кросс-энтропии для одного примера i выглядит следующим образом:

Categorical Cross-Entropy(i) = -? (Фактическая вероятность(i) * log(Предсказанная вероятность(i)))

Где ? означает суммирование по всем классам.

4. Итоговая категориальная кросс-энтропия для всего набора данных вычисляется как среднее значение категориальной кросс-энтропии для всех примеров.

Важно отметить, что в задачах многоклассовой классификации категориальная кросс-энтропия учитывает, как хорошо модель предсказывает вероятности для всех классов. Если предсказания близки к фактическим меткам классов, то значение категориальной кросс-энтропии будет близким к нулю, что указывает на хорошую производительность модели.

Важным аспектом применения категориальной кросс-энтропии является использование активационной функции "Softmax" на выходном слое модели, чтобы преобразовать необработанные значения в вероятности классов. Категориальная кросс-энтропия обычно работает с этими вероятностями, что делает её подходящей для задач многоклассовой классификации.

– 

Бинарная кросс

-

энтропия

:

Применяется в задачах бинарной классификации

,

где есть два класса

.

Бинарная кросс-энтропия (Binary Cross-Entropy), также известная как логистическая потеря (Logistic Loss), является функцией потерь, применяемой в задачах бинарной классификации, где есть два класса: класс "положительный" и класс "отрицательный". Эта функция потерь измеряет расхождение между предсказанными вероятностями и фактичными метками классов.

Применение бинарной кросс-энтропии в задачах бинарной классификации выглядит следующим образом:

1. Модель предсказывает вероятности для класса "положительный" (обычно обозначенного как класс 1) и вероятности для класса "отрицательный" (обычно обозначенного как класс 0) для каждого примера. Обычно это делается с использованием активационной функции "Sigmoid", которая преобразует необработанные выходы модели в вероятности, лежащие в интервале от 0 до 1.

2. Фактичные метки классов для каждого примера также представляются в виде бинарного вектора, где один элемент вектора равен 1 (класс 1 – "положительный"), а другой элемент равен 0 (класс 0 – "отрицательный").

3. Сравнивая предсказанные вероятности моделью с фактичными метками классов, вычисляется бинарная кросс-энтропия для каждого примера. Формула для вычисления бинарной кросс-энтропии для одного примера i выглядит следующим образом:

Binary Cross-Entropy(i) = -[Фактичная метка(i) * log(Предсказанная вероятность(i)) + (1 – Фактичная метка(i)) * log(1 – Предсказанная вероятность(i))]

4. Итоговая бинарная кросс-энтропия для всего набора данных вычисляется как среднее значение бинарной кросс-энтропии для всех примеров.

Бинарная кросс-энтропия имеет следующие ключевые особенности:

– Она является подходящей функцией потерь для задач бинарной классификации, где прогнозируется принадлежность к одному из двух классов.

– Она штрафует модель за неверные и неуверенные предсказания, что способствует обучению более уверенных классификаций.

– Она легко интерпретируется и может быть использована для оценки вероятностных предсказаний модели.

Бинарная кросс-энтропия является стандартным выбором функции потерь в задачах бинарной классификации и широко используется в таких приложениях, как определение спама в электронной почте, детекция болезней на медицинских изображениях и другие задачи, где необходимо разделять два класса.

– Среднее абсолютное отклонение (MAE): Среднее абсолютное отклонение (Mean Absolute Error, MAE) – это функция потерь, применяемая в задачах регрессии. Она измеряет среднее абсолютное отклонение между предсказанными значениями модели и фактическими значениями в данных. MAE предоставляет информацию о средней величине ошибки модели в абсолютных единицах, что делает её более интерпретируемой.

Принцип работы MAE заключается в следующем:

1. Для каждого примера в наборе данных модель делает предсказание. Это предсказание может быть числовым значением, таким как цена дома или температура, и модель пытается предсказать это значение на основе входных признаков.

2. Разница между предсказанным значением и фактическим значением (истинным ответом) для каждого примера вычисляется. Эта разница называется "остатком" или "ошибкой" и может быть положительной или отрицательной.

3. Абсолютное значение ошибки для каждого примера вычисляется, то есть разница превращается в положительное число.

4. Среднее абсолютное отклонение вычисляется как среднее значение всех абсолютных ошибок.
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
6 из 9