Оценить:
 Рейтинг: 0

Нейросети практика

Год написания книги
2023
Теги
<< 1 2 3 4 5 6 7 8 9 10 11 >>
На страницу:
6 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля

# Разделение данных на обучающий, проверочный и тестовый наборы

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, test_size=0.5, random_state=42)

# Проверка размеров наборов данных

print("Размер обучающего набора:", X_train.shape)

print("Размер проверочного набора:", X_val.shape)

print("Размер тестового набора:", X_test.shape)

```

В этом примере данные разделяются на обучающий (70%), проверочный (15%) и тестовый (15%) наборы. Функция `train_test_split` из библиотеки scikit-learn используется для случайного разделения данных. Параметр `test_size` определяет размер проверочного и тестового наборов, а параметр `random_state` устанавливает начальное значение для генератора случайных чисел, чтобы результаты были воспроизводимыми.

2. Перекрестная проверка (Cross-validation):

```python

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

# Загрузка данных

X, y = load_data()

# Создание модели

model = LinearRegression()

# Выполнение перекрестной проверки

scores = cross_val_score(model, X, y, cv=5) # 5 фолдов

# Вывод результатов

print("Оценки производительности модели:", scores)

print("Средняя оценка производительности:", scores.mean())

```

В этом примере данные разделены на 5 фолдов (поднаборов). Модель линейной регрессии используется для обучения и оценки производительности на каждом фолде. Функция `cross_val_score` из библиотеки scikit-learn выполняет перекрестную проверку, вычисляя оценки производительности для каждого фолда. Результаты печатаются, включая оценку производительности для каждого фолда и среднюю оценку производительности по всем фолдам.

3. Временное разделение:

```python

# Загрузка временных данных

X, y = load_temporal_data()

# Разделение данных по времени

train_size = int(0.7 * len(X))

val_size = int(0.15 * len(X))

X_train, y_train = X[:train_size], y[:train_size]

X_val, y

_val = X[train_size:train_size+val_size], y[train_size:train_size+val_size]

X_test, y_test = X[train_size+val_size:], y[train_size+val_size:]

# Проверка размеров наборов данных

print("Размер обучающего набора:", X_train.shape)

print("Размер проверочного набора:", X_val.shape)

print("Размер тестового набора:", X_test.shape)

```

В этом примере данные разделены на обучающий (70%), проверочный (15%) и тестовый (оставшиеся данные) наборы на основе времени. Сначала определяется размер каждого набора, и затем данные разделяются в соответствии с этими размерами. Это особенно полезно для временных рядов, где более ранние данные используются для обучения, следующие по времени данные – для проверки и настройки гиперпараметров, а самые новые данные – для тестирования производительности модели на новых, ранее не виденных данных.

В каждом из этих примеров данные разделяются на обучающий, проверочный и тестовый наборы, чтобы обеспечить правильную оценку и настройку модели. При разделении данных важно сохранять баланс между классами (если речь идет о задаче классификации) и убедиться, что разделение отражает реальное распределение данных.

6. Обработка пропущенных значений:

Верно, обработка пропущенных значений является важным шагом в предобработке данных для нейронных сетей. Пропущенные значения могут возникать из-за различных причин, таких как ошибки в сборе данных, технические проблемы или пропуски в самом наборе данных. Вот некоторые распространенные методы обработки пропущенных значений:

– Заполнение средним значением: В этом методе пропущенные значения заполняются средним значением по соответствующему признаку. Это подходит для числовых признаков, где среднее значение характеризует общую тенденцию данных.

```python

import pandas as pd

# Загрузка данных

data = pd.read_csv('data.csv')

# Заполнение пропущенных значений средним значением
<< 1 2 3 4 5 6 7 8 9 10 11 >>
На страницу:
6 из 11