# Разделение данных на обучающий, проверочный и тестовый наборы
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, test_size=0.5, random_state=42)
# Проверка размеров наборов данных
print("Размер обучающего набора:", X_train.shape)
print("Размер проверочного набора:", X_val.shape)
print("Размер тестового набора:", X_test.shape)
```
В этом примере данные разделяются на обучающий (70%), проверочный (15%) и тестовый (15%) наборы. Функция `train_test_split` из библиотеки scikit-learn используется для случайного разделения данных. Параметр `test_size` определяет размер проверочного и тестового наборов, а параметр `random_state` устанавливает начальное значение для генератора случайных чисел, чтобы результаты были воспроизводимыми.
2. Перекрестная проверка (Cross-validation):
```python
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
# Загрузка данных
X, y = load_data()
# Создание модели
model = LinearRegression()
# Выполнение перекрестной проверки
scores = cross_val_score(model, X, y, cv=5) # 5 фолдов
# Вывод результатов
print("Оценки производительности модели:", scores)
print("Средняя оценка производительности:", scores.mean())
```
В этом примере данные разделены на 5 фолдов (поднаборов). Модель линейной регрессии используется для обучения и оценки производительности на каждом фолде. Функция `cross_val_score` из библиотеки scikit-learn выполняет перекрестную проверку, вычисляя оценки производительности для каждого фолда. Результаты печатаются, включая оценку производительности для каждого фолда и среднюю оценку производительности по всем фолдам.
3. Временное разделение:
```python
# Загрузка временных данных
X, y = load_temporal_data()
# Разделение данных по времени
train_size = int(0.7 * len(X))
val_size = int(0.15 * len(X))
X_train, y_train = X[:train_size], y[:train_size]
X_val, y
_val = X[train_size:train_size+val_size], y[train_size:train_size+val_size]
X_test, y_test = X[train_size+val_size:], y[train_size+val_size:]
# Проверка размеров наборов данных
print("Размер обучающего набора:", X_train.shape)
print("Размер проверочного набора:", X_val.shape)
print("Размер тестового набора:", X_test.shape)
```
В этом примере данные разделены на обучающий (70%), проверочный (15%) и тестовый (оставшиеся данные) наборы на основе времени. Сначала определяется размер каждого набора, и затем данные разделяются в соответствии с этими размерами. Это особенно полезно для временных рядов, где более ранние данные используются для обучения, следующие по времени данные – для проверки и настройки гиперпараметров, а самые новые данные – для тестирования производительности модели на новых, ранее не виденных данных.
В каждом из этих примеров данные разделяются на обучающий, проверочный и тестовый наборы, чтобы обеспечить правильную оценку и настройку модели. При разделении данных важно сохранять баланс между классами (если речь идет о задаче классификации) и убедиться, что разделение отражает реальное распределение данных.
6. Обработка пропущенных значений:
Верно, обработка пропущенных значений является важным шагом в предобработке данных для нейронных сетей. Пропущенные значения могут возникать из-за различных причин, таких как ошибки в сборе данных, технические проблемы или пропуски в самом наборе данных. Вот некоторые распространенные методы обработки пропущенных значений:
– Заполнение средним значением: В этом методе пропущенные значения заполняются средним значением по соответствующему признаку. Это подходит для числовых признаков, где среднее значение характеризует общую тенденцию данных.
```python
import pandas as pd
# Загрузка данных
data = pd.read_csv('data.csv')
# Заполнение пропущенных значений средним значением