Оценить:
 Рейтинг: 0

Искусственный интеллект. Основные понятия

Год написания книги
2024
Теги
<< 1 ... 5 6 7 8 9 10 11 12 >>
На страницу:
9 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля

[0, 0, 0, 0, 0]

]

start = (0, 0)

end = (4, 4)

# Поиск пути в лабиринте

path = dfs(maze, start, end)

# Визуализация результата

visualize_maze(maze, path)

```

Этот код создает лабиринт, используя матрицу, где 0 представляет путь, а 1 – стену. Алгоритм DFS используется для поиска пути от начальной до конечной точки в лабиринте. Результат визуализируется с помощью библиотеки matplotlib, где красным цветом обозначен найденный путь, а зеленым и синим – начальная и конечная точки.

2. Поиск в ширину (BFS):

Пример задачи: Найти кратчайший путь от стартовой точки к конечной точке в графе дорожной сети.

Решение: Алгоритм BFS начнет с начальной точки и исследует все смежные вершины, затем все смежные вершины этих вершин и так далее. Когда будет найдена конечная точка, алгоритм вернет кратчайший путь к этой точке, так как он исследует вершины на одном уровне графа, прежде чем переходить к следующему уровню.

Для реализации алгоритма BFS в поиске кратчайшего пути в графе дорожной сети мы также можем использовать язык Python. Для визуализации результата кратчайшего пути в графе дорожной сети мы можем использовать библиотеку `networkx` для создания и отображения графа. Рассмотрим пример кода:

```python

import networkx as nx

import matplotlib.pyplot as plt

from collections import deque

# Функция для поиска кратчайшего пути методом BFS

def bfs(graph, start, end):

visited = set()

queue = deque([(start, [start])]) # Очередь для обхода графа

while queue:

current, path = queue.popleft()

if current == end:

return path

if current not in visited:

visited.add(current)

for neighbor in graph[current]:

if neighbor not in visited:

queue.append((neighbor, path + [neighbor]))

return None

# Пример графа дорожной сети (представлен в виде словаря смежности)

road_network = {

'A': ['B', 'C'],

'B': ['A', 'D', 'E'],

'C': ['A', 'F'],

'D': ['B'],

'E': ['B', 'F'],

'F': ['C', 'E', 'G'],

'G': ['F']

}

start = 'A'

end = 'G'

# Поиск кратчайшего пути в графе дорожной сети

shortest_path = bfs(road_network, start, end)

print("Кратчайший путь от", start, "к", end, ":", shortest_path)

# Создание графа и добавление вершин

G = nx.Graph()

for node in road_network:
<< 1 ... 5 6 7 8 9 10 11 12 >>
На страницу:
9 из 12