Оценить:
 Рейтинг: 0

История астрономии. Великие открытия с древности до Средневековья

Год написания книги
1953
Теги
<< 1 2 3 4
На страницу:
4 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Принцип гомоцентрических сфер, как мы увидим в следующей главе, прекрасно вписывается в космологические идеи Аристотеля и, значит, должен был быть сохранен, поэтому Каллипп, чтобы улучшить систему, вынужден был добавить в нее больше сфер. Он считал теории Юпитера и Сатурна достаточно верными и оставил их нетронутыми, и это показывает нам, что он не осознавал эллиптическое неравенство в движении обеих планет, хотя оно может достигать величины в 5 или 6°. А вот крупные недостатки в теории Марса он постарался исправить, введя для этой планеты пятую сферу, чтобы получить ретроградное движение, не допуская при этом серьезной ошибки в синодическом периоде. Это всего лишь догадка, поскольку никто четко не говорит, почему Каллипп ввел по сфере в теории Марса, Венеры и Меркурия[89 - Симпликий всего лишь говорит, что Евдем коротко и ясно изложил причины такого добавления («О небе», с. 497).], но Скиапарелли показал, что дополнительная сфера может давать ретроградное движение без лишнего увеличения движения по широте. Пусть АОВ представляет эклиптику, причем А и В — противоположные точки на ней, которые проходят круг зодиака за сидерический период Марса. Пусть сфера (третья сфера Евдокса) совершает поворот вокруг этих точек в синодический период планеты, и пусть некоторая точка Р

на экваторе этой сферы является полюсом четвертой сферы, которая вращается вдвое быстрее третьей в противоположном направлении, унося с собой точку Р

, которая является полюсом пятой сферы, вращающейся в том же направлении и в течение того же периода, что и третья, и уносящей планету в точке Мна ее экваторе. Легко увидеть, что если в начале движения точки Р

и М расположены в плоскости эклиптики в порядке АР

Р

МВ, то в любой момент времени углы будут такими, как показано на рисунке, и так как АР

= МР

= 90°, то планета М за синодический период будет описывать фигуру, симметричную эклиптике, форма которой будет меняться в соответствии с принятой длиной дуги Р

Р

и, подобно гиппопеде, может производить ретроградное движение. И она имеет то преимущество над гиппопедой, что может дать планете в районе точки О гораздо большую прямую и ретроградную скорость при том же движении по широте. Следовательно, она может заставить планету двигаться обратно даже в тех случаях, где гиппопеда Евдокса этого сделать не может. Таким образом, если Р

Р

принять равной 45°, то кривая принимает показанную на рисунке форму; наибольший отход по широте составляет 4°11?, длина кривой вдоль эклиптики – 95°20?, и она имеет две тройные точки у концов, в 45° от центра. Когда планета проходит О, ее скорость в 1,293 раза больше скорости Р

вокруг оси АВ, и, так как период вращения последней составляет 780 дней, суточное движение Р

= 360°/780 = 0,462°, каковое число, умноженное на 1,293, дает 0,597° в качестве суточной скорости ретроградного движения на кривой в точке О. Но так как прямое движение по эклиптике точки О = 360°/686 = 0,525°, то полученное в результате суточное ретроградное движение планеты по небу равно 0,072°, что достаточно приближено к реальному движению Марса в противостоянии. Следует, однако, иметь в виду, что у нас нет возможности узнать, какое значение Каллипп предполагал для расстояния Р

Р

; но то, что введение новой сферы действительно может сделать теорию удовлетворительной, доказано исследованием Скиапарелли.

Аналогичным образом, дополнительная сфера сняла ошибки в теории Венеры. Если Р

Р

= 45°, то максимальная элонгация равна 47°40?, что очень близко к истинной величине; также объясняется и разная скорость планеты в четырех частях синодического обращения; так как в изображенной выше кривой переход от одной тройной точки к другой занимает одну четверть периода, тот же переход назад – еще одну четверть, а очень медленное движение по маленьким петлям в конце кривой занимает оставшееся время. Что касается Меркурия, то теория Евдокса и без того была уже достаточно верна и, без сомнения, дополнительная сфера лишь ее усовершенствовала.

В солнечную теорию Каллипп ввел две новые сферы, чтобы учесть неравномерное движение Солнца по долготе, открытое примерно за сто лет до того Метоном и Евктемоном благодаря неравной продолжительности времен года. В так называемом Папирусе Евдокса, который мы уже упоминали, мы находим значения продолжительности времен года, принятые Каллиппом (взятые из парапегмы, или метеорологического календаря Гемина), и, хотя значения указываются только в целых числах дней (95, 92, 89, 90, начиная с весеннего равноденствия), в каждом случае ошибка составляет менее одного дня, притом что погрешность соответствующих значений, определенных Евктемоном около 430 года до н. э., составляет от ЕД до 2 дней. Таким образом, очевиден прогресс в наблюдениях за Солнцем в Греции, произошедший за век, который закончился около 330 года до н. э. Добавив еще две сферы к трем сферам Евдокса, Каллипп должен был лишь следовать тому же принципу, которым Евдокс объяснял неравномерность синодического движения планет, и фактически гиппопеда длиной 4° и 2? шириной самым удовлетворительным образом дает то самое необходимое максимальное неравенство 2°. Точно так же увеличилось на две и количество лунных сфер, и, хотя Симпликий говорит о причине не очень ясно, едва ли можно сомневаться, что имеется в виду причина, аналогичная той, которую он только что привел для Солнца. Иными словами, Каллипп должен был знать об эллиптическом неравенстве движения Луны. В самом деле, вряд ли он мог его не заметить, даже если просто ограничился изучением лунных затмений, не наблюдая за движением Луны в другое время, поскольку интервалы между затмениями по сравнению с соответствующими долготами (выведенными по долготам Солнца) сразу же показывают, насколько движение Луны по долготе далеко от равномерного. Гиппопеда 12° в длину составит лишь дважды по 9? в ширину и потому значительно не повлияет на широту, а средняя величина неравенства составит 6°. Усовершенствованная теория, таким образом, была не хуже любой другой вплоть до открытия эвекции.

Такова была усовершенствованная теория гомоцентрических сфер, разработанная Каллиппом. Можно поистине сказать, что научная астрономия берет начало от Евдокса и Каллиппа, так как здесь мы впервые встречаем то взаимное влияние теории и наблюдения, которое характерно для развития астрономии в последующие века. Евдокс первым вышел за рамки чисто философских рассуждений об устройстве Вселенной; он первым попытался систематически объяснить движения планет. И когда он это сделал, встал следующий вопрос: насколько эта теория соответствует наблюдаемым явлениям, и Каллипп сразу же предоставил факты наблюдений, необходимые для проверки теории, и изменил ее так, чтобы теоретические и наблюдаемые движения согласовались друг с другом в пределах точности, достижимой на тот момент. Отныне астрономы отказались от философских рас-суждений, не подкрепленных последовательными наблюдениями; так начался прогресс астрономической науки.

Глава 5

Аристотель

Систему гомоцентрических сфер полностью принял Аристотель (384—322 до н. э.), последний великий философ-теоретик, сыгравший заметную роль в истории древней астрономии. В отличие от Платона он искал идею в ее конкретном воплощении в явлениях природы и потому обращал внимание на все результаты опыта и наблюдений. Вследствие этой тенденции в Аристотелевой философии видеть во Вселенной систему частей, каждая из которых представляет важность для концепции целого, его труды носят несколько энциклопедический характер, охватывая все отрасли знания; но хотя они существенно более сухие и прозаичные, чем поэтические диалоги Платона, они сыграли гораздо более значительную роль в развитии науки и то же время позволяют нам ярко представить себе состояние знаний в то время, когда интеллектуальная жизнь в Греции находилась в самом своем расцвете.

В рамки данной книги не входит рассмотрение принципов аристотелевской философии природы, изложенных в восьми томах «Физики» – чисто метафизического труда, трактующего общие условия природного бытия: движение, пространство и время. В этом труде Аристотель на самом деле делает лишь немногим больше, чем анализирует смысл повседневных выражений и слов, чтобы таким образом решить вопросы природы, вместо того чтобы попытаться решить их исключительно путем наблюдения и эксперимента. Астрономические вопросы он рассматривает в своем труде из четырех книг «О небе», а также в некоторой степени и в четырех книгах «Метеорологики», где также рассуждает о некоторых астрономических предметах (кометах, Млечном Пути). Труд «О небе», однако, посвящен не одной только астрономии, о которой на самом деле говорит лишь вторая его книга; но нужно помнить, что Аристотель, вероятно, не несет ответственности ни за форму, в которой его произведения дошли до нас, ни за названия, под которыми мы их знаем. Первая из четырех книг имеет весьма метафизический характер и рассматривает такие вопросы, как конечность или бесконечность Вселенной, была ли она сотворена, имеет ли начало и т. п. Что касается первого вопроса, то Аристотель утверждает, что материальная Вселенная не может быть бесконечной в пространстве, так как линия, проходящая от центра Земли до бесконечно удаленного тела, не могла бы совершить оборот за ограниченное время (двадцать четыре часа); и так как не может быть бесконечно удаленных тел, не может быть и бесконечного пространства, так как это всего лишь вместилище небесных тел. Небеса безначальны и неуничтожимы, так как одно не может быть без другого, хотя Платон полагал, что, хотя мир и был создан, он будет существовать вечно.

Вторая книга о небе трактует форму Космоса, движение и природу звезд и, наконец, положение и форму Земли, которая покоится в центре Вселенной. В третьей и четвертой книгах нет ничего астрономического, но они кладут начало рассуждениям, которые продолжаются в работе «О возникновении и уничтожении», где излагается теория Аристотеля о двух парах противоположностей, горячем и холодном, влажном и сухом, первые активны, вторые пассивны, и из их различных комбинаций происходят четыре элемента: огонь, воздух, вода и земля.

В своей общей концепции Космоса Аристотель руководствуется чисто метафизическими аргументами («О небе», II, гл. IV и далее). Вселенная имеет форму шара, поскольку шар среди тел, как круг среди плоских фигур, является самым совершенным благодаря своей уникальной форме, ограниченной единой поверхностью, и единственным телом, которое при вращении непрерывно занимает одно и то же пространство. Это неудачный аргумент, поскольку то же можно сказать и о любом теле вращения. В этой сферической Вселенной сфера является наилучшей формой, наделенной самым совершенным движением, а так как самое быстрое является самым совершенным, то внешняя сфера, которая вращается быстрее всего, является самой совершенной сферой среди всех и местом неизменного порядка. Она находится под непосредственным влиянием божественной первопричины движения, которая от периферии простирает свою силу к центру, а не помещается в центре, будучи движущей силой, как у пифагорейцев, или присутствует везде, будучи душой мира, как в «Тимее». Небеса движутся вправо (с востока на запад), потому что это более достойное направление, и с равномерной скоростью, так как отдельные их части не движутся относительно друг друга, как можно видеть из отсутствия изменений в созвездиях, а сфера в целом не претерпевает никакого нерегулярного ускорения или замедления, которое было бы неестественным, ведь это означало бы, что движущая сила порой слабеет, а порой усиливается. Что касается состава вечных и божественных звезд, Аристотель считает самым разумным предположение, что каждая звезда состоит из того же вещества, в котором совершает движение, и показывает, что прямолинейное движение от природы свойственно четырем известным нам элементам (огонь движется вверх, а земля – вниз), но круговое движение должно быть свойственно первозданному и высшему элементу («О небе», I, 2, с. 269 а, и II, 7, с. 289 а). Сферы и звезды состоят из этого элемента, а не из огня, и Аристотель считает, что тепло и свет небесных тел происходят из-за трения с эфиром при вращении сфер, но так, что нагревается прилегающий эфир, а не звезды или сферы (II, 7, с. 289 а).

Обращаясь к движению небесных тел, Аристотель сначала рассуждает, движутся ли звезды и их сферы, и приходит к выводу, что неразумно думать, будто каждая звезда может проделывать свой путь с точно той же скоростью, что и ее сфера, если обе они отделены друг от друга, так как «наблюдение показывает, что звезды возвращаются на то же место одновременно с орбитами». Следовательно, звезды покоятся в своих сферах и движутся только сферы. «Кроме того, поскольку звезды шарообразны (так утверждают остальные, и мы будем последовательными, если станем утверждать то же самое, раз мы производим звезды от сферического тела), а у шарообразного два вида самостоятельного движения: качение и верчение, то, если звезды действительно движутся самостоятельно, они были бы наделены одним из них, однако ни то ни другое не наблюдается. В самом деле, если бы они вертелись [вращались], то оставались бы на одном и том же месте и не изменяли своего местоположения, однако наблюдение показывает и все признают, что они его изменяют. А кроме того, разумно, чтобы все звезды были наделены одним и тем же движением, однако из всех звезд одно только Солнце кажется вертящимся на восходе и на закате, да и то причиной тому не само оно, а удаленность нашего взора; дело в том, что зрительный луч, вытягиваясь на большое расстояние, начинает кружиться от слабости. Этим же, вероятно, объясняется тот факт, что неподвижные звезды кажутся мерцающими, а планеты не мерцают: планеты близко, и поэтому зрительный луч достигает их сильным, а достигая неподвижных звезд, он вытягивается слишком далеко и от большой длины начинает дрожать. А дрожание его создает впечатление того, что [это] движение присуще самой звезде, ибо какая разница, двигать ли зрительный луч или зримый предмет. С другой стороны, очевидно, что звезды и не катятся. Катящееся должно поворачиваться, а луна постоянно видна со стороны так называемого лица» (II, 8, с. 290 а)[90 - Иными словами, Аристотель утверждает, что, раз мы видим только одну сторону Луны, это доказывает, что Луна не вращается.]. По этим причинам Аристотель заключает, что звезды не движутся самостоятельно; и так как они шарообразны, как мы видим по фазам Луны, а он утверждает, что эта форма наименее пригодна для поступательного движения, то сначала он приходит к выводу на основании их шарообразной формы, что они не движутся, а затем, исходя из отсутствия их самостоятельного движения, утверждает, что поэтому они должны быть шарообразны! Пифагорейская идея о музыке сфер не находит у него симпатии, он отвергает мысль, что мы не слышим ее, потому что она звучит всегда, и замечает, что такое множество столь огромных тел, если бы они производили звуки, подняло бы оглушительный шум, который нельзя было бы не заметить, ведь гром расщепляет даже камни и прочнейшие тела. И это еще одно доказательство, что планеты не движутся в неподвижной среде, но прикреплены к сферам, так как, если бы они свободно двигались в этой среде, они производили бы слышимые звуки (II, 9, с. 291 а).


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4
На страницу:
4 из 4